小学数学总复习专题讲解及训练(八)
主要内容
正比例和反比例
学习目标
1、使学生结合实际情境认识成正比例和反比例的量,能根据正、反比例的意义判断两种相关联的量是否成正比例或反比例。
2、使学生初步认识正比例的图像是一条直线,能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。
3、使学生在认识成正比例、反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步提升思维水平。
4、使学生进一步体会数学与日常生活的密切联系,增强探索数学知识和规律的意识,养成积极主动地参与学习活动的习惯,提高学好数学的信心。
考点分析
1、两种相关联的量,一种量变化,另一种量也随着变化。如果这两种量中相对应的两个数的比的比
31
值(也就是商)一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。 如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子表示:
y = (一定)。 x2、用“描点法”可以得到正比例的图像,正比例的图像是一条直线。对照图像,能根据一种量的值,估计另一种量相对应的值。
3、两种相关联的量,一种量变化,另一种量也随着变化。如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们之间的关系叫做反比例关系。
如果用字母x和y分别表示两种相关联的量,用k表示它们的积,反比例关系可以用这样的式子表示:xy = (一定)。
4、两个变量的比值一定,这两个变量成正比例;两个变量的积一定,这两个变量成反比例;没有上述两种关系,这两个变量不成比例。
典型例题
例1、(正比例的意义)一列火车行驶的时间和路程如下表。这两种量有什么关系?
时间/时 路程/千米 1 120
分析与解:(1)从上表可以看出,表中有时间和路程两种量。
(2)从左往右看,时间扩大,路程也扩大;从右往左看,时间缩小,路程也缩小。所以它们是两种
相关联的量。
(3)路程和时间的比值始终不变,行驶速度。
通过观察和计算,我们对路程和时间的关系有两点发现:第一点路程和时间是两种相关联的量,也就是时间变化,路程也随着变化;第二点路程和对应的时间的比的比值(也就是速度)是一定的,有这样的关系:
2 240 3 360 4 480 5 600 6 720 …… …… 120360240 = 120, = 120, = 120……这个比值就是火车的132路程 = 速度(一定)。 时间具备了这两个条件,我们就可以得到结论:行驶的路程和时间成正比例关系;行驶的路程和时间成正比例的量。
32
点评:判断两种量是不是成正比例,分三步:一看它们是不是相关联的两种量;二是看一种量变化,
另一种量是不是也随着变化;满足了前面两个条件,再看它们的比值是否一定。不要省去任何一步。如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子表示:
例2、(判断是否成正比例)
练习本的单价一定,买练习本的数量和总价是不是成正比例?为什么?
分析与解:根据正比例的意义,看两个变量的比值是否一定,如果两个变量的比值一定,那么这两个
变量就成正比例,反之,则不成正比例。
买练习本的数量和总价是两种相关联的量,它们与练习本的单价有下面的关系:
y = (一定)。 x买练习本的总价 = 练习本的单价(一定)
数量所以练习本的数量和总价成正比例。
例3、(正比例的图像)磁悬浮列车匀速行驶时,路程与时间的关系如下。
时间/分 路程/千米
(1)图中的点A表示时间为1分钟时,磁悬浮列车驶过的路程为7千米。请你试着描出其他各点。
(2)连接各点,它们在一条直线上吗?
(3)根据图像判断,列车运行2分半钟时,行驶的路程是多少千米?行驶30千米大约需要几分钟? 路程/千米
42 35 28 21 14 1 7 2 14 3 21 4 28 5 35 6 42 7 49 …… ……
33
7 ●A 0
1 2 3 4 5 6 7 时间/分
分析与解:根据提供的各组数据描出图像的许多个点,再依次连成直线。路程和时间相对应的数的比
值都是7,即速度一定,路程和时间成正比例,图像是一条直线。对照图像,可以根据时间的值估计出路程的值,也可以根据路程的值估计出时间的值,估计时允许有一定的出入。
(1)描点、连线如图。 路程/千米 42 ● 35 ● 28 ● 21 ● 14 ● 7 ●A 0
1 2 3 4 5 6 7 时间/分
(2)在一条直线上,因为路程和时间成正比例,正比例的图像是一条直线。
(3)根据图像,列车运行2分半钟时,行驶的路程是17.5千米;行驶30千米大约需要4.3分钟。
例4、(辨析)圆的周长和直径成正比例,圆的面积和半径成正比例?
分析与解:圆的周长和直径成正比例,而圆的面积和半径却不成正比例。
可列表判断。
半径/cm 直径/cm 周长/cm 面积/cm2 1 2 6.28 3.14 2 4 12.56 12.56 3 6 18.84 28.26 4 8 25.12 50.24 5 10 31.4 78.5 6 12 37.68 113.04 …… …… …… ……
34
圆的周长和直径的相对应的数的比值都是3.14,所以圆的周长和直径成正比例。而圆的面积和半径的相对应的数的比值是变化的,所以圆的面积和半径不成正比例。
圆的周长和直径成正比例,圆的面积和半径却不成正比例。
例5、(反比例的意义)
下表是王师傅加工一批零件时,每小时加工零件个数随时间变化的情况。这两种量有什么关系?
每小时加工零件的个数/个 20 30 40 60 80 …… 加工的时间/时 12 8 6 4 3 ……
分析与解:(1)从上表可以看出,表中有每小时加工零件的个数和加工的时间两种量。(2)从左往右
看,每小时加工零件的个数扩大,加工的时间反而缩小;从右往左看,每小时加工零件的个数缩小,加工的时间反而扩大。所以它们是两种相关联的量。(3)每小时加工零件的个数和相对应的加工的时间的积都始终不变,如20 × 12 = 240,30 × 8 = 240,40 × 6 = 240……而这个积就是这批零件的总个数。
通过观察和计算,我们发现:每小时加工零件的个数和加工的时间是两种相关联的量,每小时加工零件的个数随着加工的时间变化而变化,但无论它们怎么变化,相对应的积是一定的,有这样的关系:每小时加工零件的个数 × 加工的时间 = 零件的总个数(一定)。
所以每小时加工零件的个数和加工的时间成反比例的量,它们之间的关系叫做反比例关系。
点评:判断两种量是不是成反比例,和正比例一样,分三步:一看它们是不是相关联的两种量;二是
看一种量变化,另一种量是不是也随着变化;满足了前面两个条件,再看它们的乘积是否一定,进行判断。不要省去任何一步。如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子表示:xy = (一定)。
例6、(判断是否成反比例)
总产量一定,每公顷的产量和公顷数是不是成反比例?为什么?
分析与解:根据反比例的意义,看两个变量的乘积是否一定,如果两个变量的积一定,那么这两个变
量就成反比例,反之,则不成反比例。
每公顷的产量和公顷数是两种相关联的量,它们与总产量有下面的关系: 每公顷的产量 × 公顷数 = 总产量(一定)
35