E图11-4-18
16.如图11-4-19所示,一带电液滴在相互垂直的匀强电场和匀强磁场中运动,已知电场强度的大小为E,方向竖直向下,磁感应强度为B,方向垂直纸面向里.若此液滴在垂直于磁感应强度的平面内做半径为R的匀速圆周运动,设液滴的质量为m,求:(1)液滴的速度大小和绕行方向;(2)若液滴运行到轨迹最低点A时,分裂成大小相同的两滴,其中一个液滴仍在原来的平面内做半径为3R的圆周运动,绕行方向不变,且此圆周的最低点也是A,另一滴将如何运动? 17.质量为m,带电量为q的液滴以速度v沿与水平成45?角斜向上进入正交的匀强电场和匀强磁场叠加区域,电场强度方向水平向右,磁场方向垂直纸面向里,如图11-4-20所示.液滴带正电荷,在重力、电场力及磁场力共同作用下在场区做匀速直线运动.试求:(1)电场强度E和磁感应强度B各多大?(2)当液滴运动到某一点A时,电场方向突然变为竖直向上,大小不改变,不考虑因电场变化而产生的磁场的影响,此时液滴加速度多少?说明此后液滴的运动情况.
图11-4-19图11-4-2024.如图11-4-21所示,匀强磁场垂直纸面向里,磁感应强度B=1T,匀强电场水平向右,电场强度E=10,有一带正电的微粒m=2×10-6kg,电量q=2×10-6C,在纸面内做匀速直线运动.g取10m/s2,问:(1)微
粒的运动方向和速率如何?(2)若微粒运动到P电时突然撤去磁场,经过时间t后运动到Q点,P、Q连线与电场线平行,那么t为多少?
19.如图11-4-22所示,一质量为m,带电量为+q的粒子以速度v0从O点沿y轴正方向射入磁感应强度为B的圆形匀强磁场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从点b处穿过x轴,速度方向与x轴正方向的夹角为30°,同时进入场强为E、方向沿与x轴负方向成60°角斜向下的匀强电场中,通过了b点正下方的c点,如图15-76所示.粒子的重力不计,试求: v图11-4-22
图11-4-21(1)圆形匀强磁场区域的最小面积; (2)c点到b点的距离s.
20.如图11-4-23所示,置于光滑水平面上的绝缘小车A、B质量分别为mA=3kg、mB=0.5kg,质量为mC=0.1kg、带电量为q=+1/75 C、可视为质点的绝缘物体C位于光滑小车B的左端.在A、B、C所在的空间有一垂直纸面向里的匀强磁场,磁感强度B=10T,现小车B静止,小车A以速度v0=10m/s向右运动和小车B碰撞,碰后物体C在A上滑动.已知碰后小车B的速度为9m/s,物体C与小车A之间有摩擦,其他摩擦均不计,小车A足够长,全过程中C的带电量保持不变,求:(1)物体C在小车A上运动的最大速率和小车A运动的最小速度.(g取10m/s2) (2)全过程产生的热量.
图11-4-23
21.如图11-4-24所示,在空间有水平方向的匀强磁场,磁感应强度为B,方向垂直于纸面向里,在磁场中有一长为L、内壁光滑且绝缘的细筒MN竖直放置,筒的底部有一质量为m、带电荷量为+q的小球,现使细筒MN沿垂直磁场的方向水平向右匀速运动,设小球带电荷量不变.(1)若使小球能沿筒壁上升,则细筒运动速度v应满足什么条件?(2)当细筒运动速度为v0(v0>v)时,试求小球在沿细筒上升高度h时小球的速度大小.
22.如图11-4-25所示,一质量为0.4kg的足够长且粗细均匀的绝缘的细管置于水平地面上,细管内表面粗糙,外表面光滑;有一质量为0.1kg,电量为0.1C的带正电小球沿管的水平向右的速度进入管内,细管内径略大于小球直径,已知细管所在处有沿水平方向且与细管相垂直的匀强磁场,磁感应强度为1T,g取10m/s2. (1)当细管被固定时,小球在管内运动的末速度的可能值为多少?(2)若细管未被固定时,带电小球以20m/s的初速度进入管内,且整个运动过程中细管没有离开水平地面,则系统最终产生的内能是多少? 图11-4-25图11-4-24
25.如图11-4-28所示,在直角坐标xoy的第一象限中分布着指向-y轴方向的匀强电场,在第四象限中分布着垂直纸面向里方向的匀强磁场,一个质量为m、带电+q的粒子(不计
重力)在A点(0,3)以初速v0=120m/s平行x轴射入电场区域,然后从电场区域进入磁场,又从磁场进入电场,并且只通过x轴上的P点(6,0)和Q点(8,0)各一次,已知该粒子的荷质比为q/m=10C/kg. (1)画出带电粒子在电场和磁场中的运动轨迹.(2)求磁感强度B的大小. 26.如图11-4-29所示,oxyz坐标系的y轴竖直向上,在坐标系所在的空间存在匀强电场和匀强磁场,电场方向与x轴平行.从y轴上的M点(0,H,0)无初速释放一个质量为m、电荷量为q的带负电的小球,它落在xz平面上的N(c,0,b)点(c>0,b>0).若撤去磁场则小球落在xy平面的P(l,0,0)点(l>0).已知重力加速度为g. (1)已知匀强磁场方向与某个坐标轴平行,试判断其可能的具体方向;(2)求电场强度E的大小;(3)求小球落至N点时的速率v. 8图11-4-29
1.分析与解:在带电小球下滑的过程中,小球受重力、电场力、支持力、摩擦力和f洛,受力分析如图11-4-2所示. 在y方向 mgf=ma 摩擦力f=μN,压力N=Bqv+Eq 解得:a=mgμ(qvB+qE)mμqEm
f随着小球速度v增加时,小球加速度减小.所以,小球向下做加速度逐渐减小的加速运动,最后加速度减小到零,小球做匀速直线运动.开始时v=0时,此时加速度最大,am=g
匀速时,a=0时,速度最大,mg-m(qvmB+qE)=0 所以vm=mgμqB;mg
EB图11-4-2.2分析与解:根据题意可知,两金属板间的匀强电场是间断存在的.有电场时,电场方向由上板指向下板,场强大小为E=U/d=1.56V/0.3m=5.2V/m.4粒子进入板间在0~1.0×10s内受向下的电场力Eq和向下的磁场力Bqv作用,由于电场力与磁场力之比qEBqv=5.21.3×1043×4×103=1 粒子作匀速直线运动,它的位移s=vt=4创1031?10-4m0.4m在接着的1.0×10s~2.0×10s时间内,电场撤消,α粒子只受磁场力作用,-4将作匀速圆周运动,轨道半径为R=mvBq′=6.64创101.3创10-3-274 1033.2 10-19cm=6.38cm图11-4-4轨道直径d=2R=12.76cm<d/2, 可见,粒子在作圆周运动时不会打到金属板上,粒子作匀速圆周运动的周期为T¢=2prv=2创3.146.38 103-24′10s=1.0 10-4s由于粒子作匀速圆周运动的周期恰好等于板间匀强电场撤消的时间,所以粒子的运动将是匀速直线运动与匀速圆周运动交替进行,其运动轨迹如图11-4-4所示,经过时间t=3T+l-3sv=3创210-4+1.4-3 0.44′103=6.5 10-4s从两板的正中央射离.【参考答案】1.AC 2.ACD 3.BD 4.BC 5.A 6.ABC 7.C 8.C 9.ABC 10.ABC 11.A 12.B 13.ACD 14.mg(sinαμqBμcosα),mgcosαqB. 15.g;mg+μEqμqB2. 16.(1)RBE,顺时针方向;(2)顺时
针方向,R′=R17.(1)E=mg/q,B=2mgqv;(2)a?,R=va=2g2,T=2πRv=2πvg18.(1)v=20m/s,θ=60°;(2)t=23s 19.(1)3πmv04Bq2222;(2)43mv0Eq220.(1)7.5m/s和8.25m/s;(2)24.84J 21.v>mgBq;v′=2h(qv0BmLqEmg)(1)v0≥10m/s时,v=10m/s, v0<10m/s时,v=0;(2)Q=13.75J 23.d=+v0 22.(4B3)nmEL2qUdBbL1(L2+L1/2)21BmEL2q,tab=22m+2πm3qB,sn= 24UBbem=225.(1)略;(2)1.2×10T 26.(1)10磁场方向为-x方向或-y方向;(2)E=mgl;(3)v= qH转载请保留出处,
http://www.wendangku.net/doc/b860d5345a8102d276a22f08.html
带电粒子在复合场中的运动专题练习(含答案)



