习题
1.验证下列等式 (1)
?f?(x)dx?f(x)?C (2)?df(x)?f(x)?C
?f?(x)dx?f(x)?C.
??证明 (1)因为f(x)是f?(x)的一个原函数,所以(2)因为du?u?C, 所以df(x)?f(x)?C.
2.求一曲线y?f(x), 使得在曲线上每一点(x,y)处的切线斜率为2x, 且通过点
(2,5).
解 由导数的几何意义, 知f?(x)?2x, 所以f(x)?2?f?(x)dx??2xdx?x2?C.
于是知曲线为y?x?C, 再由条件“曲线通过点(2,5)”知,当x?2时,y?5, 所
2以有 5?2?C, 解得C?1, 从而所求曲线为y?x?1
2x2sgnx是|x|在(??,??)上的一个原函数. 3.验证y?2x2x2证明 当x?0时, y?, y??x; 当x?0时, y??, y???x; 当x?0时,
22?x(x2)sgnx?0xsgnx??lim?0, 所以y???0y的导数为limx?0x?0x2??x?2x?0x?0?|x| x?04.据理说明为什么每一个含有第一类间断点的函数都没有原函数
解 由推论3的证明过程可知:在区间I上的导函数f?,它在I上的每一点,要么是连续点,要么是第二类间断点,也就是说导函数不可能出现第一类间断点。因此每一个含有第一类间断点的函数都没有原函数。
5.求下列不定积分
x2x433⑴?(1?x?x?)dx??1dx??xdx??xdx??xdx?x???3x3?C
324x21?2311x34222⑵?(x?)dx??(x?2x?)dx??x?ln|x|?C
x33x1⑶
123?dx2gx?12g?xdx??1212g?2x?C?122x?C g⑷ (2x?3x)2dx?(22x?2(2?3)x?32x)dx?(4x?2?6x?9x)dx
???4x2?6x9x????C ln4ln6ln9⑸
?34?4x2dx?313dx?arcsinx?C
2?1?x22x2x2?1?1111⑹ ?dx?dx?(1?)dx?(1?arctanx)?C 222??333(1?x)3(1?x)1?x⑺ tan2xdx?(sec2x?1)dx?tanx?x?C
??⑻ sinxdx??21?cos2x111dx?(1?cos2x)dx?(x?sin2x)?C ?22?22cos2xcos2x?sin2xdx??dx??(cosx?sinx)dx?sinx?cosx?C ⑼ ?cosx?sinxcosx?sinx⑽
cos2xcos2x?sin2x11dx?dx?(??cos2x?sin2x?cos2x?sin2x?sin2xcos2x)dx??cotx?tanx?C (10?9)t90t?C??C ⑾ ?10?3dt??(10?9)dt?ln(10?9)ln90t2tt⑿
?8xxxdx??xdx?x8?C
157815⒀ (??1?x1?x1?x1?x2?)dx??(?)dx??dx?2arcsinx?C
2221?x1?x1?x1?x1?x2⒁ (cosx?sinx)dx?⒂ cosxcos2xdx??(1?sin2x)dx??1dx??sin2xdx?x?12cos2x?C
111(cos3x?cosx)dx?(sin3x?sinx)?C ??22313x1?3xx?x33xx?x?3xx?x⒃ ?(e?e)dx??(e?3e?3e?e)dx?e?3e?3e?e?C
33 习题
1.应用换元积分法求下列不定积分:
11cos(3x?4)d(3x?4)?sin(3x?4)?C ?3?312x212x22x22⑵ ?xedx??ed(2x)?e?C
44dx1d(2x?1)1⑶ ????ln|2x?1|?C
2x?122x?121nn⑷ ?(1?x)dx??(1?x)d(1?x)?(1?x)n?1?C
n?1⑴ cos(3x?4)dx?⑸
?(
13?x2?11?3x2)dx??123?x1?3xx1?arcsin?arcsin3x?C33dx?1?312)d3x
⑹ 2?2x?312x?322x?322x?2dx??2d(2x?3)??C??C
22ln2ln2133⑺
??1?12?2228?3xdx?(8?3x)d(8?3x)??(8?3x)?C?(8?3x)2?C ?3339??1?13?333?(7?5x)d(7?5x)??(7?5x)?C?(7?5x)3?C ?552107?5x⑻
?dx1223⑼ xsinxdx??21122sinxdx??cosx2?C ?22)14??1cot(2x??)?C ⑽ ?????224sin2(2x?)sin2(2x?)44xddxdx2?tanx?C ⑾ 解法一: ?????xx1?cosx22cos2cos222dx(1?cosx)dxdxcosxdx解法二: ??????sin2x?sin2x 1?cosx1?cos2xdsinx1??cotx????cotx??C 2sinxsinxdx⑿解法一:利用上一题的结果,有
d(2x??d(?2?x)dx1??x????tan(?x)?C??tan(?)?C ?1?sinx??22421?cos(?x)2dx(1?sinx)dxdxdcosx1解法二: ??????tanx??C 222??1?sinxcosx1?sinxcosxcosx解法三:
dxdxdx???1?sinx?(sinx2?cosx2)2?cos2x2?(tanx2?1)2 ?2?dtanx2?2??C 2tanx2?1(tanx2?1)⒀ 解法一:cscxdx?sec(?2?x)dx??sec(?2?x)d(?2?x)
?????ln|sec(?2?x)?tan(?2?x)|?C??ln|cscx?cotx|?C
解法二:cscxdx??1sinxdcosx1cosx?1dx?dx???sinx?sin2x?cos2x?12lncosx?1?C
?ln|cscx?cotx|?C
解法三:cscxdx?cscx(cscx?cotx)??cscx?cotxdx
d(cscx?cotx)????C??ln|cscx?cotx|?C
cscx?cotx解法四:
1dx??dx
xxxx2sincos2sin2cos22221xxx???dcot??ln|cot|?C?ln|tan|?C
x222cot2sin?cscxdx??x2⒁
?x1?x2dx??1122d(1?x)??1?x?C
2?1?x2x111x22⒂ ?dx??dx?arctan?C 42224?(x)424?x⒃
dxdlnx??xlnx?lnx?ln|lnx|?C
x4?11115⒄ ?dx?d(1?x)??C 535352?5(1?x)10(1?x)(1?x)x3114dx?dx⒅ ?8424?(x)?2x?2?11x?21x?2?ln|4|?C?ln|4|?C422x?282x?244
⒆
dx11x?(?)dx?ln|x|?ln|1?x|?C?ln||?C ?x(1?x)?x1?x1?x⒇ cotxdx??cosx?sinxdx?ln|sinx|?C
(21) cos5xdx?cos4xcosxdx?(1?sin2x)2dsinx
???21??(1?2sin2x?sin4x)dsinx?sinx?sin3x?sin5x?C
35dxd(2x)(22) 解法一:????ln|csc2x?cot2x|?C
sinxcosxsin2xdxcosxdxdtanx????ln|tanx|?C 解法二:?sinxcosxsinxcos2x?tanxdx(sin2x?cos2x)dx?解法三:?
sinxcosx?sinxcosx