第二十六讲 含参数的一元二次方程的整数根问题
对于一元二次方程ax2+bx+c=0(a≠0)的实根情况,可以用判别式Δ=b2-4ac来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质.本讲结合例题来讲解一些主要的方法.
例1 m是什么整数时,方程
(m2-1)x2-6(3m-1)x+72=0
有两个不相等的正整数根.
解法1 首先,m2-1≠0,m≠±1.Δ=36(m-3)2>0,所以m≠3.用求根公式可得
由于x1,x2是正整数,所以
m-1=1,2,3,6,m+1=1,2,3,4,6,12,
解得m=2.这时x1=6,x2=4.
解法2 首先,m2-1≠0,m≠±1.设两个不相等的正整数根为x1,x2,则由根与系数的关系知
所以m2-1=2,3,4,6,8,9,12,18,24,36,72,即
m2=3,4,5,7,9,10,13,19,25,37,73,
只有m2=4,9,25才有可能,即m=±2,±3,±5. 经检验,只有m=2时方程才有两个不同的正整数根.
说明 一般来说,可以先把方程的根求出来(如果比较容易求的话),然后利用整数的性质以及整除性理论,就比较容易求解问题,解法1就是这样做的.有时候也可以利用韦达定理,得到两个整数,再利用整除性质求解,解法2就是如此,这些都是最自然的做法. 例2 已知关于x的方程
a2x2-(3a2-8a)x+2a2-13a+15=0
(其中a是非负整数)至少有一个整数根,求a的值.
分析 “至少有一个整数根”应分两种情况:一是两个都是整数根,另一种是一个是整数根,一个不是整数根.我们也可以像上题一样,把它的两个根解出来. 解 因为a≠0,所以
所以
所以只要a是3或5的约数即可,即a=1,3,5. 例3 设m是不为零的整数,关于x的二次方程
mx2-(m-1)x+1=0
有有理根,求m的值.
解 一个整系数的一元二次方程有有理根,那么它的判别式一定是完全平方数.令
Δ=(m-1)2-4m=n2,
其中n是非负整数,于是
m2-6m+1=n2,
所以 (m-3)2-n2=8,
(m-3+n)(m-3-n)=8.
由于m-3+n≥m-3-n,并且
(m-3+n)+(m-3-n)=2(m-3)
是偶数,所以m-3+n与m-3-n同奇偶,所以
说明 一个整系数的一元二次方程如果有整数根或有理根,那么它的判别式一定是完全平方数,然后利用平方数的性质、解不定方程等手段可以将问题解决. 例4 关于x的方程
ax2+2(a-3)x+(a-2)=0
至少有一个整数解,且a是整数,求a的值. 解 当a=0时,原方程变成-6x-2=0,无整数解.
当a≠0时,方程是一元二次方程,它至少有一个整数根,说明判别式
Δ=4(a-3)2-4a(a-2)=4(9-4a)
为完全平方数,从而9-4a是完全平方数.令9-4a=n2,则n是正奇数,
要使x1为整数,而n为正奇数,只能n=1,从而a=2.要使x2为整数,即n-3|4,n可取1,5,7,从而a=2,-4,-10. 综上所述,a的值为2,-4,-10.
说明 本题是前面两种方法的“综合”.既要用判别式是平方数,又要用直接求根.有时候,往往是几种方法一同使用. 例5 已知关于x的方程
x2+(a-6)x+a=0
的两根都是整数,求a的值.
解 设两个根为x1≥x2,由韦达定理得
从上面两式中消去a得
x1x2+x1+x2=6,
所以 (x1+1)(x2+1)=7,
所以a=x1x2=0或16.
说明 利用韦达定理,然后把参数消去,得到的是关于x1,x2的不定方程,而求解这个对称的不定方程往往是容易入手的. 例6 求所有有理数r,使得方程
rx2+(r+1)x+(r-1)=0
的所有根是整数.
分析 首先对r=0和r≠0进行讨论.r=0时,是关于x的一次方程;r≠0时,是关于x的二次方程,由于r是有理数,处理起来有些困难,这时用直接求根或用判别式来做,均不能奏效.可用韦达定理,先把这个有理数r消去.
解 当r=0时,原方程为x-1=0,所以x=1.
当r≠0时,原方程是关于x的一元二次方程,设它的两个整数根为x1,x2,且x1≥x2,则 消去r得
x1x2-x1-x2=2,
所以(x1-1)(x2-1)=3.
例7 已知a是正整数,且使得关于x的一元二次方程
ax2+2(2a-1)x+4(a-3)=0
至少有一个整数根,求a的值. 解 将原方程变形为
(x+2)2a= 2(x+6).
显然x+2≠0,于是
由于a是正整数,所以a≥1,即
所以 x2+2x-8≤0,
(x+4)(x-2)≤0,
所以 -4≤x≤2(x≠-2).
当x=-4,-3,-1,0,1,2时,得a的值为1,6,10,3,