【常考题】中考数学试题(及答案)
一、选择题
1.如图A,B,C是
上的三个点,若
,则
等于( )
A.50° B.80° C.100° D.130°
2.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是( )
A.③④ B.②③ C.①④ D.①②③
3.阅读理解:已知两点M(x1,y1),N(x2,y2),则线段MN的中点K?x,y?的坐标公式为:x?x1?x2y?y20?,eO经过点,y?1.如图,已知点O为坐标原点,点A??3,22A,点B为弦PA的中点.若点P?a,b?,则有a,b满足等式:a2?b2?9.设B?m,n?,则m,n满足的等式是( )
A.m2?n2?9
C.?2m?3???2n??3
22?m?3??n?B.??????9
?2??2?D.?2m?3??4n2?9
2224.如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则下列三个结论:①sin∠C>sin∠D;②cos∠C>cos∠D;③tan∠C>tan∠D中,正确的结论为( )
A.①② B.②③ C.①②③ D.①③
5.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( ) A.12 B.15 C.12或15 D.18
6.如图,直线l1∥l2,将一直角三角尺按如图所示放置,使得直角顶点在直线l1上,两直角边分别与直线l1、l2相交形成锐角∠1、∠2且∠1=25°,则∠2的度数为( )
A.25° B.75° C.65° D.55°
7.如图,是由四个相同的小正方体组成的立体图形,它的左视图是( )
A. B. C. D.
x3?1? 8.分式方程
x?1?x?1??x?2?的解为()
A.x?1
B.x?2
C.x??1
D.无解
9.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( ) A.6折 C.8折
B.7折 D.9折
10.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正确结论的个数是( )
A.4个 B.3个 C.2个 D.1个
11.为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是( ) 捐款数额 人数 10 2 20 4 30 5 50 3 100 1
A.众数是100
B.中位数是30
C.极差是20
D.平均数是30
12.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为( )
A.10 B.12 C.16 D.18
二、填空题
13.如图:已知AB=10,点C、D在线段AB上且AC=DB=2; P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连结EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是________.
14.已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=_____. 15.不等式组??x?a?0有3个整数解,则a的取值范围是_____.
?1?x?2x?516.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是 .
17.用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的
半径为_______.
18.关于x的一元二次方程(a+1)x2-2x+3=0有实数根,则整数a的最大值是_____. 19.正六边形的边长为8cm,则它的面积为____cm2.
20.如图①,在矩形 MNPQ 中,动点 R 从点 N 出发,沿 N→P→Q→M 方向运动至点 M 处停止,设点 R 运动的路程为 x,△MNR 的面积为 y,如果 y 关于 x 的函数图象如图②所示,则矩形 MNPQ 的面积是________.
三、解答题
21.为调查广西北部湾四市市民上班时最常用的交通工具的情况,随机抽取了四市部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车,E:其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题:
(1)在这次调查中,一共调查了 名市民,扇形统计图中,C组对应的扇形圆心角是 °;
(2)请补全条形统计图;
(3)若甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种,则甲、乙两人恰好选择同一种交通工具上班的概率是多少?请用画树状图或列表法求解.
22.甲乙两人做某种机械零件,已知甲每小时比乙多做4个,甲做120个所用的时间与乙做100个所用的时间相等,求甲乙两人每小时各做几个零件?
23.在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.
(1)求证:四边形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.
24.今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为A,B,C,D四个等级,并绘制了如下不完整的频数分布
表和扇形统计图: 等级 A B C D 成绩(s) 90<s≤100 80<s≤90 70<s≤80 s≤70 频数(人数) 4 x 16 6 根据以上信息,解答以下问题: (1)表中的x= ;
(2)扇形统计图中m= ,n= ,C等级对应的扇形的圆心角为 度; (3)该校准备从上述获得A等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a1,a2表示)和两名女生(用b1,b2表示),请用列表或画树状图的方法求恰好选取的是a1和b1的概率.
25.材料:解形如(x+a)4+(x+b)4=c的一元四次方程时,可以先求常数a和b的均值
,然后设y=x+
.再把原方程换元求解,用种方法可以成功地消去含未知数的
奇次项,使方程转化成易于求解的双二次方程,这种方法叫做“均值换元法. 例:解方程:(x﹣2)4+(x﹣3)4=1 解:因为﹣2和﹣3的均值为=1,
去括号,得:(y2+y+)2+(y2﹣y+)2=1 y4+y2+
+2y3+y2+y+y4+y2+
﹣2y3+y2﹣y=1
,所以,设y=x﹣,原方程可化为(y+)4+(y﹣)4
整理,得:2y4+3y2﹣ =0(成功地消去了未知数的奇次项) 解得:y2=或y2=
(舍去)
所以y=±,即x﹣=±.所以x=3或x=2.
(1)用阅读材料中这种方法解关于x的方程(x+3)4+(x+5)4=1130时,先求两个常数