好文档 - 专业文书写作范文服务资料分享网站

牛顿迭代法文献综述

天下 分享 时间: 加入收藏 我要投稿 点赞

“牛顿迭代法”最新进展文献综述

牛顿法是一种重要的迭代法,它是逐步线性化的方法的典型代表。牛顿迭代法又称为牛顿-拉夫逊方法,它是在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根。另外该方法广泛用于计算机编程中。

介绍一下牛顿迭代法研究的前沿进展,1992年南京邮电学院基础课部的夏又生写的一篇题名一类代数方程组反问题的牛顿迭代法,对一类代数方程组反问题提出了一个可行的迭代解法。从算法上看,它是一种解正问题—迭代—解正问题迭代改善的求解过程。湖南师范大学的吴专保;徐大发表的题名堆浸工艺中浸润面的非线性问题牛顿迭代方法,为了研究堆浸工艺的机理,用牛顿迭代公式寻求浸润面的非线性方程的数值解,经过14次迭代的误差达到了,说明此算法收敛有效。浙江大学电机系的林友仰发表的牛顿迭代法在非线性电磁场解算中的限制对非线性电磁场解算中的限制做了分析,求解非线性方程组时迭代法是不可避免的。牛顿—拉斐森迭代法由于它的收敛速度快常被优先考虑。应用这个方法的主要问题是求雅可比矩阵。因为雅可比矩阵元素的计算非常费时。然而,本文要说明的是当利用以三角形为单元的有限元法求解非线性方程组时,应用牛顿法其雅可比矩阵容易求得,并且它保持了原系数的对称性和稀疏性,因而节省了时间。与此相反,若在差分法中应用牛顿迭代,并且按习惯用矩形网格进行剖分,则雅可比阵的计算很费时,而且不再保持原有对称性,这就使得存贮量和计算时间大为增加。南株洲工学院信息与计算科学系的吕勇;刘兴国发表的题名为牛顿迭代法加速收敛的一种修正格式,主要内容牛顿迭代法是求解非线性方程的一种重要的数值计算方法,在通常情况下,它具有至少平方收敛。本文利用文献[4]所建立的迭代格式xn+1=xn-αf(xfn)(x+n)f′(xn),对迭代格式中的参数α的讨论,实现了牛顿迭代法加速收敛的一种修正格式。

O5年江南大学理学院张荣和他的伙伴薛国民发表了一篇名为修正的三次收敛的牛顿迭代法的论文,给出了牛顿迭代法的两种修正形式,证明了它们都是三阶收敛的,给出的相互比较的数值例子有力地说明了这一点。哈尔滨工程大学水声工程学院的王大成和雷亚辉一块和丁士圻在07年做了一篇题名基于牛顿迭代法的频不变响应阵设计的文献,为了避免空间指向性随频率变化造成发射或接收信号失真,目标检测与分类用主动声呐常采用频不变响应阵。频域加权矢量的计算是设计频不变响应阵的关键技术。首先根据基阵对空间信号的接收模型给出频不变响应阵的定义,接着从描述基阵实际空间响应和预成空间响应之间差异的数学表达式出发,提出了频不变指数的概念,进而结合所研究问题的目标函数特性给出了利用牛顿迭代法获得实现频不变响应阵所需频域加权矢量的新算法。针对均匀线阵和圆弧阵所作的计算机仿真结果表明,新算法不但收敛速度快、计算精度高,而且不受基阵类型和阵元指向性的限制。

张子贤河北工程技术高等专科学校在93年发表一篇题名牛顿迭代法在内部回收率推求中的应用主要内容是<正> 在水利工程经济分析和财务分析中,内部回收率是《水利经济计算规范》中规定的方法之一。所谓内部回收率是指工程内在的回收投资的能力或内在的取得报酬的能力。也就是要计算出什么利率下,该工程在整个经济计算期内的效益现值与该工程的全部投资、年运行费用现值相等。湖南师范大学的吴专保,徐大为了研究堆浸工艺的机理,用牛顿迭代公式寻求浸润面的非线性方程的数值解,经过14次迭代的误差达到了,说明此算法收敛有效,发表了堆浸工艺中浸润面的非线性问题牛顿迭代方法。85年浙江大学电机系的林悠扬发表题名牛顿迭代法在非线性电磁场解算中的限制,在文献中讨论了求解非线性方程组时迭代法是不可避免的。牛顿—拉斐森迭代法由于它的收敛速度快常被优先考虑。应用这个方法的主要问题是求雅可比矩阵。因为雅可比矩阵元素的计算非常费时。然而,本文要说明的是当利用以三角形为单元的有限元法求解非线性方程组时,应用牛顿法其雅可比矩阵容易求得,并且它保持了原系数的对称性和稀疏性,因而节省了时间。与此相反,若在差分法中应用牛顿迭代,并且按习惯用矩形网格进行剖分,则雅可比阵的计算很费时,而且不再保持原有对称性,这就使

得存贮量和计算时间大为增加。

08年奥运会中北京化工大学数学系的余明明和吴开谡,张妍发表牛顿迭代法与几种改进格式的效率指数,主要研究牛顿迭代、牛顿弦截法以及它们的六种改进格式的计算效率,计算了它们的效率指数,得到牛顿迭代、改进牛顿法、弦截法和改进弦截法(即所谓牛顿迭代的P.C格式)、二次插值迭代格式、推广的牛顿迭代法、调和平均牛顿法和中点牛顿法的效率指数分别为0.347/n、0.3662/n、0.4812/n、0.4812/n、0.347/n、0.3662/n、0.3662/n、0.3662/n.我们的结果显示,利用抛物插值多项式推出的迭代格式和改进弦截法并没有真正提高迭代的计算效率。他们还改进弦截法与牛顿弦截法等价。牛顿迭代法在日常生活中应用非常广泛,许多论文介绍了这种方法,利用这种方法解决了很多实际问题,多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。为此我们在学习中要体会这种方法的重要性。

牛顿迭代法是以微分为基础的,微分就是用直线来代替曲线,由于曲线不规则,那么我们来研究直线代替曲线后,剩下的差值是不是高阶无穷小,如果是高阶无穷小,那么这个差值就可以扔到不管了,只用直线就可以了,这就是微分的意义。牛顿法是牛顿在17世纪提出的一种求解方程f(x)=0.多数方程不存在求根公式,从而求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。牛顿迭代法是取x0之后,在这个基础上,找到比x0更接近的方程的跟,一步一步迭代,从而找到更接近方程根的近似跟。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根。另外该方法广泛用于计算机编程中。

罗佑新,李晓峰,罗烈雷,廖德岗组成小组在07年发表一篇题名混沌映射牛顿迭代法与平面并联机构正解研究,主要研究了自然科学与工程中的许多问题都可以转化为非线性方程组的求解问题,牛顿迭代法是重要的一维及多维的迭代技术,其迭代本身对初始点非常敏感。运用混沌映射xn+1=cos(2/xn)产生初始点,首次提出了基于混沌映射的牛顿迭代法求解非

线性方程组的新方法。对3-RPR平面并联机构正解问题进行了研究,给出了算例。该方法简单、实用,为实际机构的设计提供了多种选择方案,为机构学设计提供了全新的方法。北京联合大学应用文理学院的廖章钜写了牛顿迭代法与剖分相结合的一种多项式求根算法,主要解决了牛顿迭代法是多项式求根的一种效率很高的算法,但是它有两个缺点:第一每次只能求出一个ε-根,求其它根时若采用降次处理又会产生精度降低的问题。第二有时会遇到由于初始点选择不当而使算法失效。如果将牛顿迭代法与剖分相结合,可以产生一个新的多项式求根算法。经过对110个10次到20次多项式的求根检验发现:1)一次求根率(求出根数与应有根数之比)达到88%以上;2)已经求出的每一个根的平均迭代次数K(d)=c(d)·d,其中d为多项式的次数,c(d)<14;3)在复数域内求一个根的计算量为O(d3)次实数乘法。中国科学院地理信息产业发展中心的张立立发表对牛顿迭代法进行普通多圆锥投影的逆变换算法的改进,研究普通多圆锥投影坐标逆变换可以使用牛顿迭代法来求解超越方程。但是使用杨启和设计的牛顿迭代法只能对多圆锥投影坐标的部分区域内的数据进行逆变换,不能求解全球范围内的经纬度。本文对杨启和设计的牛顿迭代法的初值确定进行了改进,可以对全球范围内的数据进行逆变换,利于程序设计和实现。周新年,罗仙仙,罗桂生,郑丽凤,官印生从悬链线的标准线形出发 ,推导悬索无荷线形及拉力的计算式 ;通过建立状态协调方程 ,导出有荷水平拉力与有荷挠度的关系 ,运用牛顿迭代的数值解法求解悬索有荷线形与拉力。题名为牛顿迭代法悬索线形与拉力的研究。

廖章钜发表题名与剖分相结合的牛顿迭代法使牛顿迭代法与剖分相结合所产生的新算法显示出: l.几乎可以求出一元复n次多项式的所有根。2.可以求出二元n次多项式的等位线。南京师范大学李贤成发表题名3000m障碍跑场地设计的一种新方案——牛顿迭代法在场地设计中的应用,本文用牛顿迭代法求得3000m障碍跑第二弯道所需设计线应对圆心角的弧度和圆的半径,给障碍跑场地的设计和测画提供了理论依据。兰州工业高等专科学校机械工程系,兰石总厂石化公司的罗文翠,王玉虎写了一篇基于牛顿迭代法计算圆弧齿轮传动公法线长度的文献,这篇文献主要讲述了以圆弧齿轮传动及

其测量尺寸公法线长度的计算原理和公式为依据 ,以6 7型单圆弧齿轮为例 ,提出利用牛顿迭代法计算圆弧齿轮公法线的原理、求解方程流程图、迭代方程及编程 ,比手工计算大大降低了工作量 ,而且精度也得到了很好保证。宁波高等专科学校电子系洪立给出了牛顿迭代的广义收敛条件,并在Banach空间中建立了相应的收敛定理.用自己题名为牛顿迭代的收敛条件的文章说明了此收敛条件比SmaleS在1986年的结果更佳。武汉化工学院自动化系杨帆,郭德文用题名为“牛顿迭代法”构造高阶 M -J分形图阐述了用“牛顿迭代法”构造高阶 M J分形图的原理、方法及分形图特征 ;并用 VB编制了分形演示程序软件包 ;用计算机模拟了大量分形图。

沈阳化工学院邵国万,刘玉芹发表基于牛顿迭代法的移动机器人编队算法,该文借鉴滚动规划的思想,探究了全局环境未知,障碍物分散条件下移动机器人系统的编队问题。文中提出的基于牛顿迭代法的移动机器人编队算法,将机器人系统的编队问题分解为各个机器人自主移向预定目标的过程,利用实时探得的局部环境信息,不断修整预定目标而完成编队。该算法计算量小,实时性强,不受编队形状所限。仿真结果表明了该算法的有效性。

兰州工业高等专科学校机械系,兰州兰石国民油井工程公司,兰州工业高等专科学校机械系,电源车辆研究所的罗文翠,王玉虎,刘哲,于海滨共同发表题名利用牛顿迭代法计算双圆弧齿轮传动公法线长度,以双圆弧齿轮传动及其测量尺寸公法线长度的计算原理和公式为依据,以 81型双圆弧齿轮为例,提出利用牛顿迭代法计算双圆弧齿轮公法线长度的原理、流程及迭代方程,与手工计算相比大大降低了工作量,而且精度也得到了很好的保证。燕山大学机械工程学院秦泗吉,李洪波,朱清香,杨煜生发表刚塑性有限元牛顿迭代解法收敛性分析及改进方法说明了刚度阵迭代算式中非线性项含有应变速率倒数,易使刚度阵产生畸变,迭代难以收敛

对此,提出了在使迭代

算式仍满足牛顿法的要求的情况下,逐步增加非线性项对刚度阵贡献的方法经编程计算验证,该方法可放宽对初始近似的要求,较易得到收敛解

牛顿迭代法具有平方收敛的速度,所以在迭代过程中只要迭代几次就会得到很精确的解。这是牛顿迭代法比简单迭代法优越的地方。选定的初值要接近方程的解,否则有可能的不到收敛的结果。再者,牛顿迭代法计算量比

牛顿迭代法文献综述

“牛顿迭代法”最新进展文献综述牛顿法是一种重要的迭代法,它是逐步线性化的方法的典型代表。牛顿迭代法又称为牛顿-拉夫逊方法,它是在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x)
推荐度:
点击下载文档文档为doc格式
428t894n0q3y3j84vsq02xzhu2kzfw009sp
领取福利

微信扫码领取福利

微信扫码分享