目前,SSR标记技术已被广泛用于遗传图谱构建、品种指纹图谱绘制及品种纯度检测,以及目标性状基因标记等领域。特别在人类和哺乳动物的分子连锁图谱中,已成为取代RFLP标记的第二代分子标记。
2.SSR标记的特点 SSR的检测是依据其两侧特定的引物进行PCR扩增,因此是基于全基因组DNA扩增其微卫星区域。检测到的一般是一个单一的复等位基因位点。SSR标记为共显性标记,可鉴别出杂合子和纯合子;重复性高,稳定可靠。为了提高分辨率,通常使用聚丙烯酰胺凝胶电泳它可检测出单拷贝差异。它兼具PCR反应的优点,所需DNA样品量少,对DNA质量要求不太高。
使用SSR技术的前提是需要知道重复序列两翼的DNA序列。这可以在其他种的DNA数据库中查询,但更多的是必须针对每个染色体座位的微卫星,从其基因组文库中发现可用的克隆,进行测序,以其两端的单拷贝序列设计引物,因此微卫星标记的开发成本高。
3.ISSR标记 在SSR标记的基础上开发的ISSR(inter-simple sequence repeat polymorphicDNA)分子标记是用两个相邻SSR区域内的引物去扩增它们中间单拷贝序列,通过电泳检测其扩增产物的多态性。引物设计采用二个核苷酸、三个核苷酸或四个核苷酸序列为基元(motifs),以其不同重复次数再加上几个非重复的锚定碱基组成随机引物,从而保证引物与基因组DNA中SSR的5'或3'末端结合,通过PCR反应扩增两个SSR之间的DNA片段。如(AC)nX,(TG)nX,(ATG)nX,(CTC)nX,(GAA)nX等(X代表非重复的锚定碱基)。Naganka等(1997)已在小麦的ISSR标记
研究中发现ISSR标记可获得数倍于RAPD标记的信息量。由于ISSR标记不像RFLP标记一样步骤繁琐,且不需同位素标记,因此,针对重复序列含量高的物种,利用ISSR法可与RFLP,RAPD等分子标记相媲美。它对填充遗传连锁图上大的不饱和区段,富集有用的理想标记具有重要意义。
(五)其他标记
1.CAPs(cleaved amplification polymorphism sequence—tagged sites) CAPs技术又称为PCR—RFLP。用特异设计的PCR引物扩增目标
材料时,由于特定位点的碱基突变、插入或缺失数很小,以至无多态性出现,往往需要对相应PCR扩增片段进行酶切处理,以检测其多态性(Akopyanz等,1992)。其基本步骤是:先利用特定引物进行PCR扩增,然后将PCR扩增产物用限制性内切酶酶切,酶切产物通过琼脂糖凝胶电泳将DNA片段分开,溴化乙锭(EB)染色,观察其多态性。与RFLP技术一样,CAPs技术检测的多态性其实是酶切片段大小的差异。Talbert等(1994)在小麦中将RFLP标记转化为STS标记过程中,有些STS标记无多态,但酶切后又出现多态性。CAPs作为一种分子标记,有以下几个优点:①引物与限制酶组合非常多,增加了揭示多态性的机会,而且操作简便,可用琼脂糖电泳分析。②在真核生物中,CAPs标记呈共显性。③所需DNA量少。④结果稳定可靠。⑤操作简便、快捷、自动化程度高。CAPs标记最成功的应用是构建拟南芥遗传图谱。Konieczny等(1993)将RFLP探针两端测序,合成PCR引物,在拟南芥基因组DNA中进行扩增,之后用一系列4碱基识别序列的限制性内切酶酶切扩增产物,产生了很多CAPs标记,并且只用了28个巧植株,就将这些CAPs标记定位在各染色体上并构建了遗传图谱。I-tittalmani(1995)等找到了一个抗稻瘟病基因Pi—2(t)的CAPs标记。总之,CAPs标记在二倍体植物研究中可发挥巨大的作用,是PCR标记的有力补充。但在多倍体植物中的应用有一定局性。另外,CAPs标记需使用内切酶,这又增加了研究成本,限制了该技术的广泛应用。
2.STS(Sequence—tagged sites) STS是序列标签位点或序标位的简称。它是指基因组中长度为200~500bp,且核苷酸/顷序已知的单拷贝序列,
可采用PCR技术将其专一扩增出来。1989年,华盛顿大学的Olson等人利用STS单拷贝序列作为染色体特异的界标(Landmark),即利用不同STS的排列顺序和它们之间的间隔距离构成STS图谱,作为该物种的染色体框架图(Framework map),它对基因组研究和新基因的克隆以及遗传图谱向物理图谱的转化研究具有重要意义。STS引物的获得主要来自RFLP单拷贝的探针序列,微卫星序列。其中,最富信息和多态性的STS标记应该是扩增含有微卫星重复顺序的DNA区域所获得的STS标记。 迄今为止,STS引物的设计主要依据单拷贝的RFLP探针,根据已知RFLP探针两端序列,设计合适的引物,进行PCR扩增。与RFLP相比,STS标记最大的优势在于不需要保存探针克隆等活体物质,只需从有关数据库中调出其相关信息即可。最近,随着人类基因组研究的深入,表达序列标定(expressed sequence tags,ESTs)应运而生。由于它直接与一个表达基因相关,很易于转变成STS。
STS标记表现共显性遗传,很容易在不同组合的遗传图谱间进行标记的转移,且是沟通植物遗传图谱和物理图谱的中介,它的实用价值很具吸引力。但是,与SSR标记一样,STS标记的开发依赖于序列分析及引物合成,目前仍显成本太高。目前,国际上已开始收集STS信息,并建立起相应的信息库,以便于各国同行随时调用。
第二节 重要农艺性状基因连锁标记的筛选技术