AEDF现沿EF将四边形AEFD折起,使AE?BE,EG?BD(如???(0???1),G是BC的中点.
ABDC图9-11-4).
(1)求证:平面AEFD?平面BEFC;
(2)确定?的值并计算二面角D?BF?C的大小; (3)求点C到平面BDF的距离.
A A D
E E F
· C B B G
图9-11-4
(1)在原图中:
D F · G C 2AE?EF,折起后:由AE?BE 及已知AE?EF,BEAE?平面
?DAB??ABC??.?AB?BC,AB?AD.∵
AEDF,∴EF//BC//AD,?EBFCEF?E 所以
BE,AE?平面AEFD,?平面AEFD?平面BEFC.
z A E D F A E D F y B · G 图 C x B · G C (2)知EA,EB,EF两两垂直,建立以E为空间坐标系原点EB,EF,EA分别为x,y,z轴.则
E(0,0,0),B(4?4?,0,0),C(4?4?,4,0),
G(4?4?,2,0),D(0,2,4?),
?BD?(4??4,2,4?),EG?(4?4?,2,0),EG?BD,??(4??4)2?4?0解得??1?1. 即2A(0,0,2),B(2,0,0),D(2,2,0),F(0,3,0),?BF?(?2,3,0),BD?(?2,2,2).设平面DBF的一个法向
量为n1?(x,y,z),由n1?BD?0,n1?BF?0,即n1?(3,2,1).又平面BCF的一个法向量n2?(0,0,1).∴cos??n1?n2n1?n2?14,又因为二面角D?BF?C的平面角为钝角,所以为??arccos14. 1414(3)C(2,4,0),?BC?(0,4,0),?点C到面BDF的距离为d?BC?n1n1?814?414. 7