高一数学期中试卷参考答案 09.11
一、填空题
1.{1} 2.0 3.3 5.2 6.m>n 7.f(x)?x 8.(0,1] 4.a?4 9.x?2x 10.lg5 11.6 12.a?c?b 13.(??,?2) 14.二、解答题
15.m?0或2或1 16.⑴{x|?3?x?1}
2⑵f(x)?loga[(1?x)(x?3)]?loga[?(x?1)?4]
34215 4而0??(x?1)?4?4,且f(x)有最小值,∴0?a?1
2f(x)?loga4??2,a?2?4,a?
17.⑴?1. 2
?k?1?3?k?a?8,∴k?1,a?1x,∴f(x)?2 22x?1⑵g(x)?x,其定义域为R,
2?12?x?11?2x2x?1???x??g(x) 又g(?x)??x2?11?2x2?1∴函数g(x)为偶函数.
18.⑴由m?2m?3?0得?1?m?3又m?Z
∴m?0或1或2而m?2m?3为偶数
2∴m?2m?3??4,∴f(x)?x
?422⑵|2a?1|?|a|,2a?1?a或2a?1??a ∴a??1或a??.
19.⑴∵[m,n]?(??,0)?(0,??)∴m?n?0或0?m?n
13?x1、x2?[m,n],当x1?x2时,f(x1)?f(x2)??1x2?x1111???(?)22x1x2aax1x2
∵m?x1?x2?n,∴x1x2?0且x2?x1?0,∴f(x1)?f(x2),∴f(x)在[m,n]上单调递增.
⑵∵f(x)在[m,n]上单调递增,∴f(x)在[m,n]上的值域为[f(m),f(n)] ∴f(m)?m且f(n)?n,∴f(x)?x有两相异的同号根m、n 即
2a?11?2?x,a2x2?a(2a?1)x?1?0 aax???a2(2a?1)2?4a2?013?,∴或. a?a???122?mn?2?0a?20.⑴f(x)?2令t?2?2∴t?[?x2x?2?2x?2a(2x?2?x)?2a2?(2x?2?x)2?2a(2x?2?x)?2a2?2
?x 2x?2?x在x?[?1,1]上单调递增
33,],此时f(x)?t2?2at?2a2?2?(t?a)2?a2?2 2233172当a??时,f(x)min?f(?)?2a?3a?
224332当??a?时,f(x)min?a?2
2233172当a?时,f(x)min?f()?2a?3a?.
2243322⑵方程f(x)?2a有解,即方程t?2at?2?0在[?,]上有解,而t?0
22223∴2a?t?,可证明t?在(0,2)上单调递减,(2,)上单调递增
tt22232t??22 t?为奇函数,∴当t?(?,0)时t???22
tt2t∴a的取值范围是(??,?22]?[22,??).