伯伯提示:由于伯伯水平有限,以下内容都是自己翻译的,可能有很多错漏之处,希望大家一起把它修整好啦。还有一些化合物的名字太过深奥,哥的英语水平太差,可能翻译错了,希望大家谅解。最后在最下面附带英文原文啊,自己对照看吧
使用离子液体绿色合成生物柴油
摘要:本文在开篇处介绍生物柴油合成的概述和历史并在文章后面介绍说明一些我们尚未公布的最新数据。最初,我们研究通过绿色方式使用离子液体获取生物柴油,它可以有酸性或碱性的性质,可以发挥既用作溶剂和有用作催化剂的酯交换反应从而获得生物柴油。根据不同地方的情况,动物和植物都可以用作为酯交换反应的资源。生物柴油是一个极大的关注点,因为它是一种可以用于汽车运输的可再生资源,同时可以减低因为使用化石燃料而被释放到环境中的二氧化碳量。
什么是生物柴油?
一般的柴油或柴油燃料就是一些在柴油发动机使用的燃料。生物柴油是一个相对清洁燃烧的替代燃料,它可以在国内生产,是一种可再生资源。生物柴油中不包含石油,但是它可以以任何比例和石油柴油混合,以创建一个混合型生物柴油。它可用于压燃式(柴油)发动机,而不需对其进行太大改装。生物柴油使用简单,可生物降解,对比起化石燃料,基本无硫和芳烃。生物柴油是一种暗黄色的液体。
它几乎是与水互不混溶,并具有较高的沸点和低蒸气压。典型的甲酯生物柴油着火点约为150摄氏度。生物柴油的粘度类似于从石油生产的柴油。它也可以用作柴油添加剂配方,以增加纯超低硫柴油的润滑性,但是使用时必须小心谨慎,以确保所使用的生物柴油不会增加超过15 ppm的硫含量的混合物。
用于生产生物柴油的方法
经过马尔凯蒂等人的审查,得出一份采用不同催化剂进行生物柴油生产的对比表。在碱催化反应过程中,已观察到的转化率高。普通的催化剂对反应物的纯度非常敏感,特别是水和游离脂肪酸,所以原料必须细化(水分含量不超过0.06%,游离脂肪酸不得超过质量分数0.5%)。大豆油脂被Noureddini等人发现在酸催化反应条件下,在酯交换反应上有良好的动力学表现。进行酯化时使用超临界醇比起在酯交换反应时使用超临界醇会有更高的反应速率。在这个过程中有一个好处,就是可以在游离脂肪酸中产生酯类。利用脂肪酶通过不同种类的动物或植物油脂产生酯是一种可行的方法,但是这种方法需要大量的水。
表1列出了布朗斯台德酸性和碱性催化剂,脂肪酶的催化剂,超临界醇催化剂。关于刘易斯基本和酸性催化剂,在文献中有几个例子
离子液体可以扮演什么样的角色?(what role can ionic liquids play)离子液体已被大量用于各种化学反应类型当中。例子可以从Wasserscheid 和 Welton所出版的两卷版的书当中查找并可从中审查离子液体的工业应用。试图在离子液体中反应的主要原因是,这些溶剂除了在低的压力和高温外不挥发。并且它们的属性可以被设计,以满足特定的需要(“设计师”溶剂)。举一个设计的例子,在改变离子液体的结构后使得它从反应产物中出现相分离,使产品的分离更容易。Another approach is to make either the cation or anion or both of the ionic liquids acidic or basic (either Lewis or Bronsted)举个具体例子,由于含官能化阳离子而表现出布朗斯台德酸性质的离子液体,如包含磺酸衍生物的咪唑鎓盐阳离子等,如4-(3 - 甲基)丁烷磺酸后面的这个方法可用于使离子液体催化酯化,酯交换反应,特别是生物柴油形成的反应。此外,可以设计这样一种离子液体,使它在反应结束后恢复完整,它没有创造任何离子液体废物并可回收利用。(对于这些离子液体来说会有这样一个问题,他们会比一些简单的催化剂更加昂贵并且比一些传统的溶剂更加昂贵。)离子液体中的酯化反应(Esterification reactions in ionic liquids)酯化反应很容易出现在某些离子液体,一个简单的例子是由Franklin basic实验出的 [36,37] 1 butylpyridinium离子液体催化反应。不幸的是,离子液体在反应中消耗。据了解,[PF.sub.6]负离子游离磷酸盐和氟离子在水溶液条件下,这可能导致催化剂变成一个无效的氟化盐。尽管这样,TANG等人。使用1 -甲基咪唑四氟硼酸盐离子液体([Hmim][[BF.sub.4]])作为溶剂和催化剂的反应。另一个例子是使用金属催化剂对伯醇,仲醇,叔醇与乙酸和醋酸酸酐ethanoylated在1 - 丁基-3 - 甲基咪唑六氟磷酸盐([[C.sub.4] MIM][PF.sub.6]])进行反应。这些反应起初工作表现良好,但当离子液体被回收时,催化剂就失效了。就是因为这些稳定的酸性离子液体中分散的阳离子或者阴离子也参与了反应。一个例子是使用[3 - (三苯基)丙烷对甲苯磺酸盐合成乙酸乙酯。质子酸催化反应最简单的方式去开展生物柴油的合成,就是直接对离子液体添加酸或者碱。现在发现除了氨基酸,如如triflic酸或4 - 甲苯磺酸,很大部分的离子液体(中立的,基本的,或酸性)都可以催化游离脂肪酸和乙醇的反应。该专利没有提到有些材料使用时会导致危险,一些离子液体/酸组合是不稳定的,并有可能导致形成氢氟酸。杜邦等公司新增[K.sub.2] C [O.sub.3]或[H.sub.2] S [O.sub.4]1 - 丁基-3 - 甲基咪唑二{(三氟甲基)磺酰扎·· NYLN.二价的激进的二氧化硫。也称为硫。 }酰胺([[C.sub.4] MIM][NTf.sub.2])transesterify伯醇和仲醇。这会导致在反应的最后形成一个由生物柴油,甘油 - 甲醇 - 离子液体催化剂两相组成的两相体系。要指出的是,要避免使用四氟硼酸盐及六氟磷酸离子液体,因为他们出现分解。在文献中较为流行的一种利用离子液体制造生物柴油的方法是在本质酸性离子液体中进行酸催化化学反应。该离子液体要具有酸性官能团在它的阴离子或阳离子中。有一个专利在2006年声称有方法使得脂肪和短链醇在离子液体催化剂当中发生酯交换反应,即此离子液体中的阳离子含有S[O.sub.3] H组(viz. sulfoalkylimidizoliums, sulfoalkylpyridiniums, sulfoalkyltriphenylphosphoniums, or sulfoalkylammoniums salts)上层就是产品,而催化剂则保持在底部。这些专利和论文和在上述文本中所描述的早
期程序都非常相似。同样的离子液体也被用于利用废油或大豆油与甲醇反应制造生物柴油的方法中。而有一种含酸性阴离子的离子液体----1 H -3- 甲基硫酸就可以
催化菜籽油和甲醇反应制造生物柴油实验(EXPERIMENTAL)
动物脂肪(特别是猪油;1.0克),甲醇(2.0克),离子液体(0.25克;选择从1到7)(结构见图3),放置在带有微波反应管的电磁搅拌器中,加热至所需温度(见表2-4)并放在CEM牌微波炉保持30分钟。待混合物冷却至室温,并观察到双相。两层产物分别用[sup.1]]H核磁共振谱分析,上层(产品)可溶解在
CDCL3,下层可从甲醇获得。放在真空环境中,下层的甲醇可以分离,而[CD.sub.3]可以通过外径补充。产率决定于脂肪酸甲酯内的-OCH3-基团数目与所有在甘油残留物和甘油三酯中含有的-OCH2-基团对比。倒出上层油酸甲酯(产品)层,溶解在其中的甲醇可以在120摄氏度时被蒸馏出或者在加热到60摄氏度,1毫米汞柱气压条件下被除去。通过H核磁共振光谱发现该产品在离子液体催化剂当中可以自由存在
碱催化反应Base-catalyzed reactions
碱催化反应是通过对酒精和甘油三酯加入离子液体催化剂加温到所需温度后得到的反应。
碱催化反应的缺点是,当应用于脂肪酸(而不是酯),盐的形成使碱催化剂无效。对于酯交换反应,不管什么情况,离子液体,甲醇和甘油会从生物柴油中形成一
个单独相,离子液体催化剂可以通过蒸馏或真空蒸馏从醇类(甲醇和甘油)中分离。催化剂可以回收利用。
Green synthesis of biodiesel using ionic liquids.
What is biodiesel?
Diesel or diesel fuel in general is any fuel used in diesel engines [4]. Biodiesel is the name of a relatively clean-burning alternative fuel, produced from domestic, renewable resources [4]. Biodiesel contains no petroleum, but it can be blended at any level with petroleum diesel to create a biodiesel blend. It can be used in compression-ignition (diesel) engines with little or no modification. Biodiesel is simple to use, biodegradable, and essentially free of sulfur and
aromatics (that are contained in fossil fuels). Biodiesel is a light to dark yellow liquid. It is practically immiscible with water and has a high boiling point and low vapor pressure. Typical methyl ester biodiesel has a flash point of ca. 150 [degrees]C. Biodiesel has a viscosity similar to petrodiesel, the industry term for diesel produced from petroleum. It can also be used as an additive in formulations of diesel to increase the lubricity of pure ultra-low sulfur diesel (ULSD) fuel, although care must be taken to ensure that the biodiesel used does not increase the sulfur content of the mixture above 15 ppm.Methods for biodiesel production A review by Marchetti et al. gives a comparison between the methods for biodiesel production using different catalysts [7] (see Table 1). High conversion has been observed in the base-catalyzed reaction process [7]. The basic catalyst is sensitive to the purity of reactants, especially to water and FFAs, so the raw materials must be refined (moisture level no more than 0.06 wt %, and the FFA no more than 0.5 wt %) [8]. Soyabean oils were found by Noureddini et al. [9] to have good transesterification kinetics under acid-catalyzed reaction. Esterification when using supercritical alcohol was shown to have a higher reaction rate than transesterification when using the same supercritical alcohol [7]. A benefit of the process is that esters are produced from the FFA. Producing ester from different sources of grease and oil using lipase is a viable method, but this involves large volumes of water [7].Table 1 lists Bronsted acidic and basic catalysts, lipase catalysts, and supercritical alcohol catalysts. In regards to Lewis basic and acidic catalysts, there are several examples in the literature [24-28].What role can ionic liquids play? Ionic liquids have been used in a large number of chemical reaction types. Examples can be found in the two-volume book by Wasserscheid and Welton [29] and a review on the industrial applications of ionic liquids [30]. The principal reasons for attempting reactions in ionic liquids is that these solvents are involatile except at low pressures and high temperatures [31], and their properties can be designed to suit a particular need (\example of design is to alter the structure of ionic liquid such that it phase separates from the product of a reaction, making product isolation easier [33]. Another approach is to make either the cation or anion or both of the ionic liquids acidic or basic (either Lewis or Bronsted) [34]. Specific examples of ionic liquids which exhibit Bronsted acidity due to functionalized cations include sulfonic acid derivatives of the imidazolium cation, e.g., 4-(3-methylimidazolium) butanesulfonic acid [35]. This last approach could be used to enable the ionic liquid to catalyze esterification, transesterification, and specifically biodiesel forming reactions. Also, it is possible to design the ionic liquid in such a way that it can be recovered intact at the end of a reaction, thus not creating any ionic liquid waste, and recycled (one of the issues with ionic liquids is that they can be more expensive than some of the simpler catalysts, and somewhat more expensive than conventional solvents).Esterification reactions in ionic liquids Esterification reactions readily occur in certain ionic liquids. A simple example is reactions catalyzed by the Franklin basic [36,37] 1-butylpyridinium ionic liquid, [C4py]Cl-AlCl3 [38,39]. Unfortunately, the ionic liquid is consumed in the reaction. It is known that the [[PF.sub.6]]-anion dissociates to phosphate and fluoride ions under aqueous conditions, and this could lead to catalyst being turned into an inactive fluoride salt [40]. Despite this, Tang et al. used the 1-methylimidazolium tetrafluoroborate ionic liquid ([Hmim][[BF.sub.4]]) as a solvent and catalyst for the reaction [41]. Another example is the reaction of primary, secondary, and tertiary alcohols that were ethanoylated with ethanoic acid and ethanoic anhydride in 1-butyl-3-methylimidazolium hexafluorophosphate ([[C.sub.4]mim][[PF.sub.6]]) using metal catalysts [42]. These reactions work well initially, but the catalyst becomes ineffective when the ionic liquid/catalyst are recycled. Because of the decomposition of these ionic liquids, stable Bronsted acidic ionic liquids, where the acid group is in the cation or anion, were used. An example is the use of [3-(triphenylphosphonium) propanesulfonic acid][tosylate] in the formation of ethyl ethanoate [43].Bronsted acid-catalyzed reactions The simplest reported way to carry out biodiesel synthesis is to add an acid or base directly to an ionic liquid [46]. The addition of acids, such as triflic acid or 4-toluenesulfonic acid, to a range of ionic liquids (neutral, basic, or acidic) was found to catalyze the reaction of FFAs with ethanol [47]. The patent fails to mention that some of the ionic liquid/acid combinations are unstable and could lead to the formation of hydrofluoric acid, which is a dangerous material to work with. Dupont et al. [48] added either [K.sub.2]C[O.sub.3] or [H.sub.2]S[O.sub.4] to 1-butyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}amide ([[C.sub.4]mim][[NTf.sub.2]]) to transesterify soyabean oil with primary and secondary alcohols. This resulted in a two-phase system at the end of the reaction of biodiesel and a glycerol-methanol-ionic liquid-catalyst phase. It was noted that the use of tetrafluoroborate and hexafluorophosphate ionic liquids should be avoided due to their decomposition. One of the more popular methods in the literature for making biodiesel in ionic liquids is to use acid-catalyzed chemistry based on an intrinsically acidic ionic liquid. The ionic liquids can have acidic functional groups in either the anion or cation. A patent [49] in 2006 claimed a method for subjecting fat and short-chained alcohols to transesterification in the presence of an ionic liquid catalyst, where the cation of the ionic liquid had a S[O.sub.3]H group (viz. sulfoalkylimidizoliums, sulfoalkylpyridiniums, sulfoalkyltriphenylphosphoniums, or sulfoalkylammoniums salts). The top layer contained the product, and the catalyst remained