.....
浙江省嘉兴市2018年中考数学试卷
一、选择题(共10题;共20分)
1.下列几何体中,俯视图为三角形的是( )
A. B. C. D.
2.2018年5月25日,中国探月工程的“桥号”中继星成功运行于地月拉格朗日L2点,它距离地球约1500000km.数1500000用科学记数法表示为( )
A. 15×105 B. 1.5×106 C. 0.15×107 D. 1.5×105
3.2018年1-4月我国新能源乘用车的月销量情况如图所示,则下列说法错误的是( )
A. 1月份销量为2.2万辆 B. 从2月到3月的月销量增长最快 C. 4月份销量比3月份增加了1万辆 D. 1-4月新能源乘用车销量逐月增加 4.不等式1-x≥2的解在数轴上表示正确的是( ) A.
B.
C. D.
5.将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺
平后的图形是( )
A. B. C. D.
6.用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是( )
.....
.....
A. 点在圆内 B. 点在圆上 C. 点在圆心上 D. 点在圆上或圆内
7.欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是;画Rt△ABC,使∠ACB=90°,BC=
,
AC=b,再在斜边AB上截取BD= 。则该方程的一个正根是( )
A.AC的长 B.AD的长 C.BC的长 D.CD的长
8.用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是( )
A. B.
C. D.
9.如图,点C在反比例函数 (x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且
AB=BC,△AOB的面积为1,则k的值为( )
A. 1 B. 2 C. 3 D. 4
10.某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙,丙、丁四队分别获得第一,二,三,四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是( ) A.甲 B.甲与丁 C.丙 D.丙与丁
二、填空题(共6题;共7分)
11.分解因式m2-3m=________。
12.如图,直线l1∥l2∥l3 , 直线AC交l1 , l2 , l3 , 于点A,B,C;直线DF交l1 , l2 , l3
.....
.....
于点D,E,F,已知 ,则 =________。
13.小明和小红玩抛硬币游戏,连续抛两次,小明说:“如果两次都是正面,那么你赢;如果两次是一正一反,则我赢,”小红赢的概率是________,据此判断该游戏________(填“公平”或“不公平”)。
14.如图,量角器的0度刻度线为AB,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A,D,量得AD=10cm,点D在量角器上的读数为60°,则该直尺的宽度为
________ cm。
15.甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%,若设甲每小时检x个,则根据题意,可列处方程:________。
16.如图,在矩形ABCD中,AB=4,AD=2,点E在CD上,DE=1,点F是边AB上一动点,以EF为斜边作Rt△EFP.若点P在矩形ABCD的边上,且这样的直角三角形恰好有两个,则AF的值是________。
三、解答题(共8题;共90分)
17. (1)计算:2( (2)化简并求值
-1)+|-3|-(
-1)0;
,其中a=1,b=2。
时,两位同学的解法如下:
18.用消元法解方程组
(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“×”。
.....
.....
(2)请选择一种你喜欢的方法,完成解答。
19.已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF。
求证:△ABC是等边三角形。
20.某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为176mm-185mm的产品为合格),随机各轴取了20个样品进行测,过程如下:收集数据(单位:mm):
甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180。
乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183。 整理数据:
分析数据:
应用数据:
(1)计算甲车间样品的合格率。
(2)估计乙车间生产的1000个该款新产品中合格产品有多少个? (3)结合上述数据信息,请判断个车间生产的新产品更好,并说明理由,
21.小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与动时间t(s)之间的关系如图2所示。
.....
.....
(1)根据函数的定义,请判断变量h是否为关于t的函数?
(2)结合图象回答:①当t=0.7s时,h的值是多少?并说明它的实际意义, ②秋千摆动第一个来回需多少时间?
22.如图1,滑动调节式遮阳伞的立柱AC垂直于地面AB,P为立柱上的滑动调节点,伞体的截面示意图为△PDE,F为PD中点,AC=2.8m,PD=2m,CF=1m,∠DPE=20°。当点P位于初始位置P0时,点D与C重合(图2),根据生活经验,当太阳光线与PE垂直时,遮阳效果最佳。
(1)上午10:00时,太阳光线与地面的夹角为65°(图3),为使遮阳效果最佳,点P需从P0上调多少距离?(结果精确到0.1m)
(2)中午12:00时,太阳光线与地面垂直(图4),为使遮阳效果最佳,点P在(1)的基础上还需上调多少距离?(结果精确到0.1m)(参考数:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,
≈1.41,
≈1.73)
23.已知,点M为二次函数y=-(x-b)2+4b+1图象的顶点,直线y=mx+5分别交x轴正半轴,y轴于点A,
B。
(1)判断顶点M是否在直线y=4x+1上,并说明理由。
(2)如图1,若二次函数图象也经过点A,B,且mx+5>-(x-b)+4b+1,根据图象,写出x的取值范围。
.....
2