从小丘西行百二十步,隔篁竹,闻水声,如鸣珮环,心乐之。伐竹取道,下见小潭,水尤清冽。全石以为底,近岸,卷石底以出,为坻,为屿,为嵁,为岩。青树翠蔓,蒙络摇缀,参差披拂。珮通:佩一猴死,见冥王,求转人身。王曰:“既欲做人,须将毛尽拔去。”即唤夜叉拔之。方拔一根,猴不胜痛叫。王笑曰:“看你一毛不拔,如何做人?”课时跟踪检测(七十五)
[高考基础题型得分练]
1.[2017·辽宁沈阳模拟]已知曲线C1的极坐标方程为ρcos 2θ=8,曲线C2的极坐标π
方程为θ=,曲线C1,C2相交于A,B两点.
6
(1)求A,B两点的极坐标; 3
?x=1+t,?2
(2)曲线C与直线?
1y=??2t1
2
(t为参数)分别相交于M,N两点,求线段MN的
长度.
2
ρcos 2θ=8,??
解:(1)由?π
θ=,?6?
π2
得ρcos =8,
3
所以ρ=16,即ρ=±4.
π??π??所以A,B两点的极坐标为A?4,?,B?-4,?或
6??6??
2
B?4,
?
?
7π?. 6??
(2)由曲线C1的极坐标方程得其直角坐标方程为
x2-y2=8,
3?x=1+t,?2将直线?
1y=t??2
2
2
代入x-y=8,
22
整理得t+23t-14=0, 即t1+t2=-23,t1·t2=-14, 所以|MN|= -23
-
-
=217.
?x=-3+3t,
2.[2017·吉林实验中学模拟]已知椭圆C:+=1,直线l:?
43?y=23+tx2y2
为参数).
(1)写出椭圆C的参数方程及直线l的普通方程;
(t(2)设A(1,0),若椭圆C上的点P满足到点A的距离与其到直线l的距离相等,求点P的坐标.
从小丘西行百二十步,隔篁竹,闻水声,如鸣珮环,心乐之。伐竹取道,下见小潭,水尤清冽。全石以为底,近岸,卷石底以出,为坻,为屿,为嵁,为岩。青树翠蔓,蒙络摇缀,参差披拂。珮通:佩一猴死,见冥王,求转人身。王曰:“既欲做人,须将毛尽拔去。”即唤夜叉拔之。方拔一根,猴不胜痛叫。王笑曰:“看你一毛不拔,如何做人?”?x=2cos θ,
解:(1)椭圆C的参数方程为?
?y=3sin θ
直线l的普通方程为x-3y+9=0. (2)设P(2cos θ,3sin θ), 则|AP|=
θ-
2
2
(θ为参数),
+3sin θ=2-cos θ,
P到直线l的距离 d=|2cos θ-3sin θ+9|2cos θ-3sin θ+9
=.
22
由|AP|=d,得3sin θ-4cos θ=5, 又sinθ+cosθ=1, 34
得sin θ=,cos θ=-.
55
2
2
?833?
故P?-,?.
?55?
??x=2+t,
3.已知曲线C:+=1,直线l:?
49?y=2-2t?
x2y2
(t为参数).
(1)写出曲线C的参数方程和直线l的普通方程;
(2)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.
解:(1)曲线C的参数方程为?
?x=2cos θ,?
??y=3sin θ
(θ为参数).
直线l的普通方程为2x+y-6=0.
(2)曲线C上任意一点P(2cos θ,3sin θ)到l的距离为
d=5
|4cos θ+3sin θ-6|. 5
d254
则|PA|==|5sin(θ+α)-6|其中α为锐角,且tan α=,
sin 30°53
225
当sin(θ+α)=-1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|
525
取得最小值,最小值为.
5
4.[2017·河南洛阳模拟]极坐标系与直角坐标系xOy取相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知直线l??x=2+tcos α,
的参数方程为?
?y=tsin α?
(t为参数).曲线
C的极坐标方程为ρsin2θ=8cos θ.
从小丘西行百二十步,隔篁竹,闻水声,如鸣珮环,心乐之。伐竹取道,下见小潭,水尤清冽。全石以为底,近岸,卷石底以出,为坻,为屿,为嵁,为岩。青树翠蔓,蒙络摇缀,参差披拂。珮通:佩一猴死,见冥王,求转人身。王曰:“既欲做人,须将毛尽拔去。”即唤夜叉拔之。方拔一根,猴不胜痛叫。王笑曰:“看你一毛不拔,如何做人?”(1)求曲线C的直角坐标方程;
(2)设直线l与曲线C交于A,B两点,与x轴的交点为F,求解:(1)由ρsinθ=8cos θ,得ρsinθ=8ρcos θ, ∴曲线C的直角坐标方程为y=8x. (2)易得直线l与x轴的交点为F(2,0), 将直线l的方程代入y=8x, 得(tsin α)=8(2+tcos α), 整理得sinα·t-8cos α·t-16=0. 由已知sin α≠0,
Δ=(-8cos α)-4×(-16)sinα=64>0, 8cos α16
∴t1+t2=,t1t2=-2<0, 2
sinαsinα故
1?11??t1-t2? +=?-?=??|AF||BF|?t1t2??t1t2?1
2
2
2
2
2
2
2
2
2
2
1
+的值. |AF||BF|
1
=
t1+t2-4t1t2
=
|t1t2|
2α?64?8cos
?sin2α?2+sin2α??
16
2sinα
1=. 2
[冲刺名校能力提升练]
1.[2017·辽宁五校联考]倾斜角为α的直线l过点P(8,2),直线l和曲线C:
?x=42cos θ,?
?y=2sin θ
(θ为参数)交于不同的两点M1,M2.
(1)将曲线C的参数方程化为普通方程,并写出直线l的参数方程; (2)求|PM1|·|PM2|的取值范围. 解:(1)曲线C的普通方程为
+=1, 324
x2y2
??x=8+tcos α,
直线l的参数方程为?
?y=2+tsin α?
(t为参数).
(2)将l的参数方程代入曲线C的方程得, (8+tcos α)+8(2+tsin α)=32,
整理得(8sinα+cosα)t+(16cos α+32sin α)t+64=0, 由Δ=(16cos α+32sin α)-4×64(8sinα+cosα)>0,
2
2
2
2
2
2
2
2
?π?得cos α>sin α,故α∈?0,?,
4??
∴|PM1|·|PM2|=|t1t2|