__________________________________________________
武汉理工大学2006级理工类各专业 高等数学A(上)试题(A卷)答案及评分标准 一、(1)D; (2)B; (3)A; (4)C; (5)D . 二、(1)e?1; (2)?210; (3)x; (4)?1; (5)1. 三、(1)解 limx?01?11?x?sinxx?sinx?==---------(2分) limlim?23x?0x?0x?sinxxxsinxx??1?cosx------------------------(4分) x?03x2sinx1=lim=.----------------------(7分) x?06x6=lim?(2)解 limx?0x20sint2dtx62xsinx4=lim--------------------------(4分) 5x?06x2x?x41=lim=.-----------------------(7分) x?06x53 dyetcost?etsint2t???e四、(1)解 --------------------------(4分) ?t?tdx?esint?ecostd2y?2e2t2e3t??.------------------(7分) dx2?e?tsint?e?tcostsint?costxdy?ydx212xdx?2ydyx(2)解 各项微分得, ,---------------(4分) ?22x2?y2?y?1????x?dy?x?ydx,------------------------------(6分) x?y 当y?0时,x??1, dyy?0?dx.---------------------------------(7分) 1__________________________________________________
__________________________________________________
五、(1)解令x?sint(0?t??2), 则dx?costdt,1?x2?cost,----------------------------(2分) ?cos2t1?x2dt--------------------------------(3分) dx=?22sintx=?csc2t?1dt-----------------------------(4分) =?cott?t?C ----------------------------(6分) ??1?x2=??arcsinx?C.-----------------(7分) x(2)解??0xsinxdx=??xd?cosx?----------------------------(2分) 0?=??xcosx?0??cosxdx------------------(5分) ??0=???sinx?0=?.--------------------------(7分) ?t2?1,dx?tdt,--------------------(2分) (3)解令t?2x?1, 则x?2?40xdx2x?1=?31?t2?1dt------------------------------(4分) 23?1??1=?t3?t?------------------------------(6分) 2?1?6= 10.--------------------------------------(7分) 32__________________________________________________
__________________________________________________
六、(1)解 设等腰梯形的高为x(0< x