课时作业16 空间向量的数量积运算
[基础巩固]
一、选择题
1.对于空间任意两个非零向量a,b,“a·b<0”是“〈a,b〉为钝角”的( )
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
1
2.已知两异面直线的方向向量分别为a,b,且|a|=|b|=1,a·b=-,则两直线的夹
2
角为( )
A.30° B.60° C.120° D.150°
π→→
3.在空间四边形OABC中,OB=OC,∠AOB=∠AOC=,则cos 〈OA,BC〉的值为( )
3
12A. B. 221
C.- D.0
2
→→
4.已知正四面体ABCD的棱长为a,点E,F分别是BC,AD的中点,则AE·AF的值为( )
122
A.a B.a
41232C.a D.a 24
5.平行六面体ABCD-A1B1C1D1中,AB=AD=AA1=1,∠BAD=∠BAA1=∠DAA1=60°,则AC1
的长为( )
A.2 B.6
C.6 D.3+33 二、填空题
6.在正方体ABCD-A1B1C1D1中,下面给出的结论:
→→→2→2
①|A1A+A1D1+A1B1|=3|A1B1|; →→→
②A1C·(A1B1-A1A)=0; →→
③AD1与A1B的夹角为60°;
→→→
④此正方体体积为|AB·AA1·AD|.
则错误结论的序号是________(填出所有错误结论的序号).
7.设|m|=1,|n|=2,2m+n与m-3n垂直,a=4m-n,b=7m+2n,则向量a,b的夹角〈a,b〉=________.
8.已知平行六面体ABCD-A1B1C1D1中,以顶点A为端点的三条棱长都等于1,且两两夹角都是60°,则对角线AC1的长是________.
三、解答题
- 1 -
9.已知正四面体OABC的棱长为1,如图所示.求: →→(1)OA·OB;
→→→→(2)(OA+OB)·(CA+CB).
10.如图所示,平行六面体ABCD-A1B1C1D1中,AB=1,AD=2,AA1=3,∠BAD=90°,∠BAA1
=∠DAA1=60°,求AC1的长.
[能力提升]
→→→→→→
11.设A,B,C,D是空间中不共面的四点,且满足AB·AC=0,AC·AD=0,AB·AD=0,则△BCD是( )
A.钝角三角形 B.锐角三角形 C.直角三角形 D.不确定
12.如图,在一个直二面角α-AB-β的棱上有两点A,B.AC,BD分别是这个二面角的两个面内垂直于AB的线段,且AB=4,AC=6,BD=8,则CD=________.
13.BB1⊥平面ABC,且△ABC是∠B=90°的等腰直角三角形,?ABB1A1、?BB1C1C的对角线都分别相互垂直且相等,若AB=a,求异面直线BA1与AC所成的角.
- 2 -
14.如图,直三棱柱ABC-A′B′C′中,AC=BC=AA′,∠ACB=90°,D,E分别为AB,BB′的中点.
(1)求证:CE⊥A′D;
(2)求异面直线CE与AC′所成角的余弦值.
课时作业16 空间向量的数量积运算 1.解析:当向量a,b反向共线时,a·b<0,但此时〈a,b〉=π,夹角不是钝角,即π“a·b<0”?“〈a,b〉∈,π”,所以“a·b<0”是“〈a,b〉为钝角”的必要不充分2条件. 答案:B a·b12.解析:设向量a,b的夹角为θ,则cos θ==-,所以θ=120°,则两|a||b|2个方向向量对应的直线的夹角为180°-120°=60°. 答案:B →→→→→3.解析:OA·BC=OA·(OC-OB) →→→→=OA·OC-OA·OB
- 3 -
→→→→→→→→=|OA||OC|cos〈OA,OC〉-|OA||OB|cos〈OA,OB〉. →→→→→→π因为〈OA,OC〉=〈OA,OB〉=,|OB|=|OC|, 3→→所以OA·BC=0. →→所以OA⊥BC. →→所以cos〈OA,BC〉=0.故选D. 答案:D →→→→→14.解析:在正四面体ABCD中,点E、F分别是BC、AD的中点,∴AE=AB+BE,AF=AD,2→→→→→→→→→111则AE·AF=(AB+BE)·AD=AB·AD+BE·AD,因为四面体ABCD是正四面体,所以BE⊥AD,222→→→→→→→→22ππaa∠BAD=,所以BE·AD=0,AB·AD=|AB|·|AD|·cos=,所以AE·AF=. 3324答案:B 5. 解析:∵AB=AD=AA1=1, ∠BAD=∠BAA1=∠DAA1=60°, →→→→→→1∴AB·AD=AD·AA1=AB·AA1=, 2→→→→∵AC1=AB+AD+AA1, →→→→→→→→→→2222∴AC1=AB+AD+AA1+2AB·AD+2AD·AA1+2AB·AA1=6, →∴|AC1|=6. 答案:C →→→→→→→→6.解析:①因为|A1A+A1D1+A1B1|=|A1C|=3|A1B1|,故①正确;②因为A1C·(A1B1-A1A)→→→→→→→→→→→→→→→22=(A1B1+A1D1+A1A)·(A1B1-A1A)=A1B1+A1B1·A1D1+A1B1·A1A-A1B1·A1A-A1A·A1D1-A1A=→→0,故②正确;③AD1与A1B两异面直线的夹角为60°,但AD1与A1B的夹角为120°,注意方向;→→④因为AB·AA1=0,故④错误. 答案:③④ 7.解析:因为(2m+n)⊥(m-3n), 所以(2m+n)·(m-3n)=0. 22化简得m·n=-2,又|a|=a=4m-n
- 4 -
=16+4+16=6. 22|b|=b=7m+2n=49+16-56=3. 所以a·b=(4m-n)·(7m+2n) 22=28|m|-2|n|+m·n=18. a·b18所以cos〈a,b〉===1,所以〈a,b〉=0°. |a||b|6×3答案:0° →→→2228.解析:设AB=a,AD=b,AA1=c,则a=b=c=1, 12所以a·b=a·c=b·c=|a|cos 60 °=, 2→→22222所以AC1=(a+b+c)=a+b+c+2b·c+2a·c+2a·b=6,所以|AC1|=6. 答案:6 →→→9.解析:在正四面体OABC中,|OA|=|OB|=|OC|=1. →→→→→→〈OA,OB〉=〈OA,OC〉=〈OB,OC〉=60°. →→→→1(1)OA·OB=|OA||OB|·cos∠AOB=1×1×cos 60°=. 2→→→→(2)(OA+OB)·(CA+CB) →→→→→→=(OA+OB)·(OA-OC+OB-OC) →→→→→=(OA+OB)·(OA+OB-2OC) →→→→→→→→22=OA+2OA·OB-2OA·OC+OB-2OB·OC 22=1+2×1×1×cos 60°-2×1×1×cos 60°+1-2×1×1×cos 60° =1+1-1+1-1=1. →→→→10.解析:因为AC1=AB+AD+AA1, →→→→→→→→→→→→→22222所以AC1=(AB+AD+AA1)=AB+AD+AA1+2(AB·AD+AB·AA1+AD·AA1). →→→→→因为∠BAD=90°,∠BAA1=∠DAA1=60°,所以〈AB,AD〉=90°,〈AB,AA1〉=〈AD,→AA1〉=60°, →所以AC1=1+4+9+2(1×3×cos 60°+2×3×cos 60°)=23. →→→222因为AC1=|AC1|,所以|AC1|=23,即AC1=23. →→→→→→→→→→→→→→2211.解析:BC·BD=(AC-AB)·(AD-AB)=AC·AD-AC·AB-AB·AD+AB=AB>0, →→→→同理,可证CB·CD>0,DB·DC>0. 所以△BCD的每个内角均为锐角,故△BCD是锐角三角形. 答案:B 2 - 5 -
→→→→12.解析:由CD=CA+AB+BD →→→→→→→→→→→2222CD=CA+AB+BD+2CA·AB+2CA·BD+2AB·BD=36+16+64=116,|CD|=229. 答案:229 13.解析:如图所示. →→→→→∵BA1=BA+BB1,AC=AB+BC, →→→→→→∴BA1·AC=(BA+BB1)·(AB+BC) →→→→→→→→=BA·AB+BA·BC+BB1·AB+BB1·BC. ∵?ABB1A1,?BB1C1C的对角线都分别相互垂直且相等,∴?ABB1A1与?BB1C1C均为正方形,→→∴BB1⊥AB,BB1⊥BC,∴BB1·AB=0, →→→→BB1·BC=0,易求得BA·AB=-a2. →→又∵AB⊥BC,∴AB·BC=0, →→→→→→2∴BA1·AC=(BA+BB1)·(AB+BC)=-a. →→→→→→又BA1·AC=|BA1||AC|cos〈BA1,AC〉, →→2-a1∴cos〈BA1,AC〉==-. 22a·2a→→又∵〈BA1,AC〉∈[0,π], →→2π∴〈BA1,AC〉=, 3又∵异面直线所成的角是锐角或直角, π∴异面直线BA1与AC所成的角为. 3→→→14.解析:(1)证明:设CA=a,CB=b,CC′=c, 根据题意,|a|=|b|=|c|且a·b=b·c=c·a=0, →→111所以CE=b+c,A′D=-c+b-a. 222→→1212所以CE·A′D=-c+b=0. 22→→所以CE⊥A′D,即CE⊥A′D. → - 6 -
→→(2)因为AC′=-a+c.所以|AC′|=2|a|. →又|CE|=52|a|. →→AC′·CE=(-a+c)·b+1c=1c2=1|a|2222, →→1|a|2所以cos〈AC′,CE〉=2=102×5210, 2|a|即异面直线CE与AC′所成角的余弦值为1010. - 7 -