xf=
?g?xy?f?xy?g?f?xgf?g?xy?x?xy?x?xy?xy= 22xy(f?g)(f?g)故
?uyf?uxg=,所以u是方程得一个积分因子 ?y?x?M?N?= ?y?x21.假设方程(2.43)中得函数M(x,y)N(x,y)满足关系
Nf(x)-Mg(y),其中f(x),g(y)分别为x和y得连续函数,试证方程(2.43) 有积分因子u=exp(
?f(x)dx+?g(y)dy)
证明:M(x,y)dx+N(x,y)dy=0
即证
?(uM)?(uN)?M?u?N?u?+M=u+N?u?
?y?y?x?y?x?xu(
f(x)dx??g(y)dy?M?N?u?M?N?u-)=N- M-)=Ne?f(x) ?u(
?y?y?x?y?x?xf(x)dx??g(y)dy?M?N-)=e?(Nf(x)-Mg(y))
?y?x-M e?f(x)dx?g(y)dy?g(y)?u(
由已知条件上式恒成立,故原命题得证。 22、求出伯努利方程的积分因子. 解:已知伯努利方程为:
两边同乘以y?ndy?P?x?y?Q?x?yn,y?o; dx?n,令z?y,
dz??1?n?P?x?z??1?n?Q?x?,线性方程有积分因子: dx??1?n?P?x?dx?n?1?P?x?dx,故原方程的积分因子为: ??e??e???1?n?P?x?dx?n?1?P?x?dx,证毕! ??e??e?23、设??x,y?是方程M?x,y?dx?N?x,y?dy?0的积分因子,从而求得可微函数U?x,y?,
?.试证使得dU???Mdx?Ndy~?x,y?也是方程M?x,y?dx?N?x,y?dy?0的积分因子的充要条件是?~?x,y?????U?,其中??t?是t的可微函数。 ?~M??????u?M????M??????????u???M???u??y?y?y~????u?,则?y证明:若?
???M????u???M???u??N?y
31
~N??????u?N????N????????u???N???u??M?x?x?x又 ~M????M???????u???N???u??M??y?y~为M?x,y?dx?N?x,y?dy?0的一个积分因子。 即?24、设?1?x,y?,?2?x,y?是方程M?x,y?dx?N?x,y?dy?0的两个积分因子,且?1?2?常数,求证?1?2?c(任意常数)是方程M?x,y?dx?N?x,y?dy?0的通解。 证明:因为?1,?2是方程M?x,y?dx?N?x,y?dy?0的积分因子
所以?iMdx??iNdy?o ?i?1,2? 为恰当方程 即 N??i?x?M??i?y?????M?N?i???y??x??,i?1,2 ?下面只需证?1?的全微分沿方程恒为零 2事实上:
??????1????22??d?1????xdx???1?ydy?????1????xdx???2?ydy???????2????22????1?2?????xdx?M??2N?ydx??????1????2??xdx?M??2N?ydx?????2
2?dx?????N?2????N??1?x?M??1????2???N2?x?M??2????1?2??y???y????dx??N?2??1?2???M??N?2???y?x????M?N????1?2????y??x??????0?即当?1??c时,?1??c是方程的解。证毕! 22
习题 2.4
求解下列方程
1、xy?3?1?y?
32
解:令
dydx?y??p?1t,则x????1?1?t??t3?t3?t2, 从而y??pdx?c??1td?t3?t2??c???3t?2?dt?c?322t?2t?c, ?x?t3?t2 于是求得方程参数形式得通解为????y?32. 2t?2t?c2、y?3?x3?1?y???0
解:令dydx?y??p?tx,则?tx?3?x3?1?tx??0,即x?t3?1t?t2?1t, 从而y??pdx?c??t???t2?1?t??d???t2?1?t???c ???t3?1????2t?1?t2??dt?c
?????2t4?t?1?t2??dt?c ?251215t?2t?t?c, ?x?t2?1于是求得方程参数形式得通解为???t.
???y?25t5?12t2?1t?c3、y?y?2ey?
解:令
dy?y??p,则y?p2epdx, 从而x??1pd?p2ep??c ??1?2pep?p2pep?dp?c =
??2ep?pep?dp?c
??1?p?ep?c,
33
p??x??1?p?e?c于是求得方程参数形式的通解为???y?y2ep,
另外,y=0也是方程的解. 4、y?1?y?2??2a, a为常数
解:令
dydx?y??tg?,则y?2a1?tg2??2asec2??2acos2?, 从而x??1pdy?c??1tg?d?2acos2???c ??4a?cos2?d??c??4a?1?cos2?2?c
??a?2??sin2???c,
于是求得方程参数形式的通解为??x??a?2??sin2???c?y?2acos2?.
5、x2?y?2?1 解:令
dydx?y??p?cost,则x?1?cos2t?sint, 从而y??costd?sint??c
??cos2tdt?c??1?cos2t2dt?c
?12t?14sin2t?c, ?x?sint于是求得方程参数形式的通解为???11. ?y?2t?4sin2t?c6、y2?y??1???2?y??2
解:令2?y??yt,则1?y??yt?1,得y?t?1t,
所以dx?dydyd??t?1???1?t?2?dtt2?y??2?yt??t??2?t??t?1?1?t2?1t2?1?t2?dt??1t2dt,?t??从而x??????1?t2??dt?c?1t?c, 34
1?x??c??t于是求得方程参数形式的通解为?,
?y?t?1?t?因此方程的通解为y?
习题2.5
1?x?c. x?c2.ydx?xdy?x2ydy
解:两边同除以x2,得:
ydx?xdyx2?ydy dyx??12y2?c 即yx?12y2?c 4.
dydx?yx?xy 解:两边同除以x,得
y
dy?xdx
1?
y
x
令yx?u 则dydx?u?xdudx 即
dyduudx?u?xdx?1?u 得到
1u??c?12lny?2,
2即x?y??1??c?2lny??
另外y?0也是方程的解。 6.?xy?1?ydx?xdy?0 解:ydx?xdy?xydx?0
35