好文档 - 专业文书写作范文服务资料分享网站

常微分方程第三版答案 doc 

天下 分享 时间: 加入收藏 我要投稿 点赞

所以,

?M?y=?N?x,故原方程为恰当方程 又2xyex2dx-2xdx+ex2dy=0 所以,d(yex2-x2)=0 故所求的解为yex2-x2=C 7.(ex+3y2)dx+2xydy=0 解:exdx+3y2dx+2xydy=0 exx2dx+3x2y2dx+2x3ydy=0 所以,d ex( x2-2x+2)+d( x3y2)=0 即d [ex( x2-2x+2)+ x3y2]=0 故方程的解为ex( x2-2x+2)+ x3y2=C 8. 2xydx+( x2+1)dy=0 解:2xydx+ x2dy+dy=0

d( x2y)+dy=0 即d(x2y+y)=0 故方程的解为x2y+y=C 9、ydx?xdy??x2?y2?dx 解:两边同除以 x2?y2 得

ydx?xdyx2?y2?dx 即,d???x??arctgy????dx 故方程的通解为argtg?x????y????x?c 10、ydx??x?y3?dy?0

26

解:方程可化为:

ydx?xdyy2?ydy 即, d???x??y????ydy 故方程的通解为:

xy?12y2?c 即:2x?y?y2?c? 同时,y=0也是方程的解。

11、?y?1?xy?dx?xdy?0

解:方程可化为:ydx?xdy??1?xy?dx

d?xy???1?xy?dx 即:

d?xy?1?xy?dx 故方程的通解为:ln1?xy?x?c

12、?y?x2?dx?xdy?0 解:方程可化为:

ydx?xdyx2?dx

?d??y??x???dx

故方程的通解为 :

yx?c?x 即:y?x?c?x? 13、?x?2y?dx?xdy?0 解:这里M?x?2y,N?x ,

?M??y?N?x ?M?N?y??x1?1xdxN?x 方程有积分因子??e?x 两边乘以?得:方程x?x?2y?dx?x2dy?0是恰当方程

故方程的通解为:

??x2?2xy?dx???????x2??y??x2?2xy?dx?dy?c?x33?x3y?c 27

即:x3?3x2y?c

14、?xcos?x?y??sin?x?y??dx?xcos?x?y?dy?0 解:这里M?xcos?x?y??sin?x?y?,N?xcos?x?y?

因为

?M?y??N?x?cos?x?y??xsin?x?y? 故方程的通解为:

??xcos?x?y??sin?x?y??dx??????xcos?x?y???y??xcos?x?y??sin?x?y??dx???dy?c xsin?x?y??c

15、?ycosx?xsinx?dx??ysinx?xcosx?dy?o 解:这里M?ycosx?xsinx,N?ysinx?xcosx

?M?y??N?x ?M??y?N?x?M?1 方程有积分因子:??e?dy?ey 两边乘以?得:

方程ey?ycosx?xsinx?dx?ey?ysinx?xcosx?dy?0为恰当方程

故通解为 :?ey?ycosx?xsinx?dx???????y?ey?ycosx?xsinx?dx??N???dy??c 即:eysinx?y?1??eycosx?c

16、x?4ydx?2xdy??y3?3ydx?5xdy??0

解:两边同乘以x2y得:

?4x3y2dx?2x4ydy???3x2y5dx?5x3ydy??0

d?x4y2??d?x3y5??0

故方程的通解为:x4y2?x3y5?c

17、试导出方程M(X,Y)dx?N(X,Y)dy?0具有形为?(xy)和?(x?y)的积分因子的充要条件。解:若方程具有?(x?y)为积分因子,

28

即: ?(?M)?y??(?N)?x (?(x?y)是连续可导) M???M???y???y?N?x???N?x M???y?N???x??(??M?y??N?x) (1) 令 z?x?y

???x?d?dz??z?x?d?dz,???y?d?dz . Md?dz?Nd?dz??(?N?x??M?y), (M?N)d?dz??(?N?x??M?y) , ?N?Md??x????yM?N , dz??(x?y)dz ?N?M方程有积分因子?(x?y)的充要条件是:?x??yM?N是x?y的函数,此时,积分因子为?(x?y)?e??(z)dz .

(2) 令z?x?y

??d??zd??d??zd??x?dz??x?y?dz ,?y?dz??y?x?dz Mxd?d??Ndz?Nydz??(?x??M?y) (Mx?Ny)d??N?Mdz??(?x??y) ?N?Md??x??y??Mx?Ny 29

此时的积分因子为?(xy)?e18. 设f(x,y)及

??N?M??x?ydzMx?Ny

?f连续,试证方程dy?f(x,y)dx?0为线性方程的充要条件是它有仅依赖于x的积分因子. ?y证:必要性 若该方程为线性方程,则有

dydx?P(x)y?Q(x) , 此方程有积分因子?(x)?e??P(x)dx,?(x)只与x有关 .

充分性 若该方程有只与x有关的积分因子?(x) . 则?(x)dy??(x)f(x,y)dx?0为恰当方程 ,

从而

?(??(x)f(x,y))?y?d?(x)?f??(x)dx ,?y???(x) ,

f?????(x)?(x)dy?Q(x)????(x)?(x)y?Q(x)?P(x)y?Q(x) . 其中P(x)????(x)?(x) .于是方程可化为dy?(P(x)y?Q(x))dx?0 即方程为一阶线性方程.

20.设函数f(u),g(u)连续、可微且f(u)?g(u),\\,试证方程yf(xy)dx+xg(xy)dy=0 有积分因子u=(xy[f(xy)-g(xy)])

?1

证:在方程yf(xy)dx+xg(xy)dy=0两边同乘以u得:

uyf(xy)dx+uxg(xy)dy=0

y?fx(f?g?f?g则?uyf?y=uf+uy?f?y+yf?u?y=fxy(f?g)+?y)?xy?xyxy(f?g)-yf?y?yx2y2(f?g)2 yf?g?f?g?xy?f?xy=?y?gy?yf?xy?y?g?xy(f?g)2=xy?yx(f?g)2 f?g?=

?xy?gf?xy(f?g)2 x?gy(f?g)?f?g而?uxg?x=ug+ux?g?x+xg?u?x=g?xyxy(f?g)+?xxy(f?g)- xg?x?xy?xx2y2(f?g)2 30

常微分方程第三版答案 doc 

所以,?M?y=?N?x,故原方程为恰当方程又2xyex2dx-2xdx+ex2dy=0所以,d(yex2-x2)=0故所求的解为yex2-x2=C7.(ex+3y2)dx+2xydy=0解:exdx+3y2dx+2xydy=0exx2dx+3x2y2dx+2x3ydy=0所以,dex(x2-2x+2)+d(x3y2)=0即d[ex(x2-2x+2)+
推荐度:
点击下载文档文档为doc格式
3xqro2snmd47le14llaq
领取福利

微信扫码领取福利

微信扫码分享