人教新版初中数学知识点总结(全面最新)
七年级数学(上)知识点
第一章 有理数
一.
知识框架
二.知识概念 1.有理数: (1)凡能写成
???正整数?正整数正有理数??整数?零?正分数?????(2)有理数的分类: ① 有理数?零 ② 有理数??负整数 ???负整数?正分数?分数??负有理数??负分数?负分数??q(p,q为整数且p?0)形式的数,都是有理数. p注意:0即不是正数,也不是负数;
-a不一定是负数,+a也不一定是正数; ?不是有理数;
- 1 -
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数:
(1)只有符号不同的两个数,互为相反数,即a和- a互为相反数; 0的相反数还是0; (2) a+b=0 ? a、b互为相反数. 4.绝对值:
(1)绝对值的意义是数轴上表示某数的点离开原点的距离;
?a(a?0)?a(a?0)?a(a?0)(2) a??0(a?0)或a??或; a????a(a?0)???a(a?0)??a(a?0)?正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数; 绝对值的问题经常分类讨论,零既可以和正数一组也可以和负数一组; 5.有理数比大小:
两个负数比大小,绝对值大的反而小; 数轴上的两个数,右边的数总比左边的数大; 大数-小数 > 0,小数-大数 < 0. 6.倒数:乘积为1的两个数互为倒数; 注意:0没有倒数;
若 a≠0,那么a的倒数是; 若ab=1? a、b互为倒数;
- 2 -
1a
若ab=-1? a、b互为负倒数.
7. 有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数. 8.有理数加法的运算律:
(1)加法的交换律:a+b=b+a ;
(2)加法的结合律:(a+b)+c=a+(b+c).
9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b). 10 有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定,负因数为奇数个时乘积为负,负因数为偶数个时乘积为正. 11 有理数乘法的运算律: (1)乘法的交换律:ab=ba;
(2)乘法的结合律:(ab)c=a(bc); (3)乘法的分配律:a(b+c)=ab+ac .
- 3 -
12.有理数除法法则:除以一个数等于乘以这个数的倒数;
a注意:零不能做除数,即无意义.
013.乘方的定义:
(1)求相同因式积的运算,叫做乘方;
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;
14.有理数乘方的法则: (1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数;
注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时:
(-a)n =an 或 (a-b)n=(b-a)n .
15.科学记数法:把一个大于10的数记成a×10n的形式,(其中1?a?10)这种记数法叫科学记数法.
16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.
17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.
18.混合运算法则:先乘方,后乘除,最后加减.
- 4 -
第二章 整式的加减 一.知识框架
二.知识概念
1.单项式:数字或字母的乘积叫单项式.
2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的系数;单项式中所有字母指数的和,叫单项式的次数. 3.多项式:几个单项式的和叫多项式.
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。 5.同类项:所含字母相同,并且相同字母的指数也相同的单项式叫做同类型。 6.合并同类项:将同类项的系数相加减,字母和字母的指数不变。 第三章 一元一次方程
一.
知识框架
- 5 -