六、已知线性规划问题
应用对偶理论证明该问题最优解的目标函数值不大于25
七、已知线性规划问题 maxZ=2x1+x2+5x3+6x4
﹡
其对偶问题的最优解为Y=4,Y2=1,试应用对偶问题的性质求原问题的最优解。
﹡l
七、用对偶单纯形法求解下列线性规划问题:
word文档可自由复制编辑
八、已知线性规划问题
T
(1) 写出其对偶问题 (2)已知原问题最优解为X﹡=(2,2,4,0),试根据对偶理论,直接求出对偶问题
的最优解。
W* = 16
第七章 整数规划
一、填空题 1.用分枝定界法求极大化的整数规划问题时,任何一个可行解的目标函数值是该问题目标函数值的下界。 2.在分枝定界法中,若选Xr=4/3进行分支,则构造的约束条件应为X1≤1,X1≥2。
3.已知整数规划问题P0,其相应的松驰问题记为P0’,若问题P0’无可行解,则问题P。无可行解。 4.在0 - 1整数规划中变量的取值可能是_0或1。
5.对于一个有n项任务需要有n个人去完成的分配问题,其 解中取值为1的变量数为n个。 6.分枝定界法和割平面法的基础都是用_线性规划方法求解整数规划。
7.若在对某整数规划问题的松驰问题进行求解时,得到最优单纯形表中,由X。所在行得X1+1/7x3+2
612/7x5=13/7,则以X1行为源行的割平面方程为_-X3-X5≤0_。
7778.在用割平面法求解整数规划问题时,要求全部变量必须都为整数。
9.用割平面法求解整数规划问题时,若某个约束条件中有不为整数的系数,则需在该约束两端扩大适当倍数,将全部系数化为整数。
10.求解纯整数规划的方法是割平面法。求解混合整数规划的方法是分枝定界法_。 11.求解0—1整数规划的方法是隐枚举法。求解分配问题的专门方法是匈牙利法。 12.在应用匈牙利法求解分配问题时,最终求得的分配元应是独立零元素_。 word文档可自由复制编辑
13.分枝定界法一般每次分枝数量为2个. 二、单选题
1.整数规划问题中,变量的取值可能是D。
A.整数B.0或1C.大于零的非整数D.以上三种都可能
2.在下列整数规划问题中,分枝定界法和割平面法都可以采用的是A 。
A.纯整数规划B.混合整数规划C.0—1规划D.线性规划 3.下列方法中用于求解分配问题的是D_。
A.单纯形表B.分枝定界法C.表上作业法D.匈牙利法 三、多项选择
1.下列说明不正确的是ABC。
A.求解整数规划可以采用求解其相应的松驰问题,然后对其非整数值的解四舍五入的方法得到整数解。B.用分枝定界法求解一个极大化的整数规划问题,当得到多于一个可行解时,通常任取其中一个作为下界。C.用割平面法求解整数规划时,构造的割平面可能割去一些不属于最优解的整数解。D.用割平面法求解整数规划问题时,必须首先将原问题的非整数的约束系数及右端常数化为整数。 2.在求解整数规划问题时,可能出现的是ABC。
A.唯一最优解B.无可行解 C.多重最佳解D.无穷多个最优解 3.关于分配问题的下列说法正确的是_ ABD。
A.分配问题是一个高度退化的运输问题B.可以用表上作业法求解分配问题 C.从分配问题的效益矩阵中逐行取其最小元素,可得到最优分配方案D.匈牙利法所能求解的分配问题,要求规定一个人只能完成一件工作,同时一件工作也只给一个人做。 4.整数规划类型包括( CDE )
A 线性规划 B 非线性规划 C 纯整数规划 D 混合整数规划 E 0—1规划 5.对于某一整数规划可能涉及到的解题内容为( ABCDE )
A 求其松弛问题 B 在其松弛问题中增加一个约束方程 C 应用单形或图解法D 割去部分非整数解 E多次切割 三、名词
1、纯整数规划:如果要求所有的决策变量都取整数,这样的问题成为纯整数规划问题。
2、0—1规划问题:在线性规划问题中,如果要求所有的决策变量只能取0或1,这样的问题称为0—1规划。
3、混合整数规划:在线性规划问题中,如果要求部分决策变量取整数,则称该问题为混合整数规划。 四、用分枝定界法求解下列整数规划问题:(提示:可采用图解法) maxZ=40x1+90x2
word文档可自由复制编辑
五、用割平面法求解
六、下列整数规划问题
说明能否用先求解相应的线性规划问题然后四舍五入的办法来求得该整数规划的一个可行解。
答:不考虑整数约束,求解相应线性规划得最优解为 x1=10/3,x2=x3=0,用四舍五人法时,令x1=3,x2=x3=0,其中第2个约束无法满足,故不可行。
七、若某钻井队要从以下10个可供选择的井位中确定5个钻井探油。使总的钻探费用为最小。若10个井位的代号为S1,S2.…,S10相应的钻探费用为C1 ,C2 ,… C10,并且井位选择要满足下列限制条件:
(1)在s1,s2,S4中至多只能选择两个; (2)在S5,s6中至少选择一个;(3)在s3,s6,S7,S8中至少选择两个; 试建立这个问题的整数规划模型
八、有四项工作要甲、乙、丙、丁四个人去完成.每项工作只允许一人去完成。每个人只完成其中一项工作,已知每个人完成各项工作的时间如下表。问应指派每个人完成哪项工作,使总的消耗时间最少?
工作 人 甲 乙 丙 丁 15 19 6 19 18 23 7 21 2l 22 16 23 24 18 19 17 I Ⅱ Ⅲ Ⅳ word文档可自由复制编辑
第二章 线性规划问题的基本概念 3、本章典型例题分析
例: maxZ?20x1?15x2 用单纯形法求解 S?t? 2x1?3x2?600
2x1?x2?400
x1,x2?0
解:先化为标准形式:maxZ?20x1?15x2 S?t? 2x1?3x2?x3?600
2x1?x2?x4?400
xj?0(j?1,2,3,4)
把标准形的系数列成一个表 基 S X1 X2
X3 S 1 -20 -15 0 X3 0 2 3 1 X4 0 2 1 0
第一次迭代:调入x1,调出x4 基 S X1 X2 X3 S 1 0 -5 0 X3 0 0 2 1 X1 0 1 1/2 0 第二次迭代:调入x2,调出x3 基 S X1 X2 X3 S 1 0 0 5/2 X2 0 0 1 1/2 X1 0 1
0
-1/4
word文档可自由复制编辑
X4 0 0 1 X4 10 -1 1/2 X4 15/2 -1/2 3/4
解 0 600 400
解 4000 200 200 解 4500 100 150