八年级数学下册 分式的基本性质
一、教学目标
1.使学生理解并掌握分式的基本性质及变号法则,并能运用这些性质进行分式的恒等变形.
2.通过分式的恒等变形提高学生的运算能力. 3.渗透类比转化的数学思想方法. 二、教学重点和难点
1.重点:使学生理解并掌握分式的基本性质,这是学好本章的关键. 2.难点:灵活运用分式的基本性质和变号法则进行分式的恒等变形. 三、教学方法 分组讨论. 四、教学手段 幻灯片. 五、教学过程 (一)复习提问 1.分式的定义?
2.分数的基本性质?有什么用途? (二)新课
1.类比分数的基本性质,由学生小结出分式的基本性质:
分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即:
2.加深对分式基本性质的理解:
例1 下列等式的右边是怎样从左边得到的?
由学生口述分析,并反问:为什么c≠0? 解:∵c≠0,
学生口答,教师设疑:为什么题目未给x≠0的条件?(引导学生学会分析题目中的隐含
条件.)
解:∵x≠0,
学生口答. 解:∵z≠0,
例2 填空:
把学生分为四人一组开展竞赛,看哪个组做得又快又准确,并能小结出填空的依据.
练习1:
化简下列分式(约分)
32?32abcabc(1) (2) 24 a 2 b 3 d (3)
2ab?15?a?b??25?a?b?2教师给出定义:
把分式分子、分母的公因式约去,这种变形叫分式的约分. 问:分式约分的依据是什么? 分式的基本性质
5xy20x2y在化简分式 时,小颖和小明的做法出现了分歧:
5xy5xy15xy5x???22 2 小明: 20xy小颖: 4x?5xy4x20x y20x
你对他们俩的解法有何看法?说说看!
教师指出:一般约分要彻底, 使分子、分母没有公因式.
彻底约分后的分式叫最简分式.
练习2(通分):
把各分式化成相同分母的分式叫做分式的通分.
3x2x3a?b(1) 2 与 2 (2) 与
x?5x?52ababc 解:(1)最简公分母是 222cab 233?bc3bc2?2aba?b(a?b)?2aa? 2 ? ??22222222ab2ab?bc2abcacac?2a2 bbabc
(三)课堂小结
1.分式的基本性质.
2.性质中的m可代表任何非零整式. 3.注意挖掘题目中的隐含条件.
4.利用分式的基本性质将分式的分子、分母化成整系数形式,体现了数化繁为简的策略,并为分式作进一步处理提供了便利条件.
.
七、板书设计
一、选一选(请将唯一正确答案的代号填入题后括号内) 1.下列各式中与分式
?a的值相等的是( ). a?b