流水行船问题的公式和例题
流水问题是研究船在流水中的行程问题,因此,又叫行船问题。在小学数学中涉及到的题目,一般是匀速运动的问题。这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式: 顺水速度=船速+水速 (1)
逆水速度=船速-水速 (2)
这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。
公式
(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。 这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
公式
(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。 根据加减互为逆运算的原理,由公式 (1)可得: 水速=顺水速度-船速 (3)
1 / 8
船速=顺水速度-水速 (4) 由公式 (2)可得: 水速=船速-逆水速度 (5)
船速=逆水速度+水速 (6)
这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:
船速=(顺水速度+逆水速度)÷2 (7)
水速=(顺水速度-逆水速度)÷2 (8)
*例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。此船在静水中的速度是多少?解:
此船的顺水速度是: 25÷5=5(千米/小时)
2 / 8
因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。
5-1=4(千米/小时) 综合算式:
25÷5-1=4(千米/小时) 答:
此船在静水中每小时行4千米。
*例2一只渔船在静水中每小时航行4千米,逆水4小时航行12千米。水流的速度是每小时多少千米?解:
此船在逆水中的速度是: 12÷4=3(千米/小时)
因为逆水速度=船速-水速,所以水速=船速-逆水速度,即: 4-3=1(千米/小时) 答:
水流速度是每小时1千米。
*例3一只船,顺水每小时行20千米,逆水每小时行12千米。这只船在静水中的速度和水流的速度各是多少?解:
因为船在静水中的速度=(顺水速度+逆水速度)÷2,所以,这只船在静水中的速度是:
(20+12)÷2=16(千米/小时)
因为水流的速度=(顺水速度-逆水速度)÷2,所以水流的速度是:(20-12)÷2=4(千米/小时)
3 / 8
答略。
*例4某船在静水中每小时行18千米,水流速度是每小时2千米。此船从甲地逆水航行到乙地需要15小时。
求甲、乙两地的路程是多少千米?此船从乙地回到甲地需要多少小时?解:
此船逆水航行的速度是: 18-2=16(千米/小时) 甲乙两地的路程是: 16×15=240(千米) 此船顺水航行的速度是: 18+2=20(千米/小时)
此船从乙地回到甲地需要的时间是: 240÷20=12(小时) 答略。
*例5某船在静水中的速度是每小时15千米,它从上游甲港开往乙港共用小时。已知水速为每小时3千米。
此船从乙港返回甲港需要多少小时? 解:
此船顺水的速度是: 15+3=18(千米/小时)
甲乙两港之间的路程是:818×8=144(千米)此船逆水航行的速度是:
4 / 8
15-3=12(千米/小时)
此船从乙港返回甲港需要的时间是: 144÷12=12(小时) 综合算式:
(15+3)×8÷(15-3) =144÷12 =12(小时) 答略。
*例6甲、乙两个码头相距144千米,一艘汽艇在静水中每小时行20千米,水流速度是每小时4千米。求由甲码头到乙码头顺水而行需要几小时,由乙码头到甲码头逆水而行需要多少小时?
解:
顺水而行的时间是: 144÷(20+4)=6(小时) 逆水而行的时间是: 144÷(20-4)=9(小时) 答略。
*例7一条大河,河中间(主航道)的水流速度是每小时8千米,沿岸边的水流速度是每小时6千米。一只船在河中间顺流而下,
6.\小时行驶260千米。求这只船沿岸边返回原地需要多少小时?解: 此船顺流而下的速度是: 260÷
5 / 8