化简分式计算过程中:(1)除法转化为乘法时,要倒转分子、分母;(2)注意负号
4、根式计算
二次根式的性质和运算是中考必考内容,特别是二次根式的化简、求值及性质的运用是中考的主要考查内容。
代数部分
第三章:方程和方程组
基础知识点:
一、方程有关概念
1、方程:含有未知数的等式叫做方程。
2、方程的解:使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。
3、解方程:求方程的解或方判断方程无解的过程叫做解方程。
4、方程的增根:在方程变形时,产生的不适合原方程的根叫做原方程的增根。
二、一元方程 1、一元一次方程
(1)一元一次方程的标准形式:ax+b=0(其中x是未知数,a、b是已知数,a≠0)
(2)一玩一次方程的最简形式:ax=b(其中x是未知数,a、b是已知数,a≠0)
(3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。
(4)一元一次方程有唯一的一个解。 2、一元二次方程
(1)一元二次方程的一般形式:ax2?bx?c?0(其中x是未知数,a、b、c是已知数,a≠0)
(2)一元二次方程的解法: 直接开平方法、配方法、公式法、因式分解法 (3)一元二次方程解法的选择顺序是:先特殊后一般,如没有要求,一般不用配方法。
(4)一元二次方程的根的判别式:??b2?4ac 当Δ>0时?方程有两个不相等的实数根; 当Δ=0时?方程有两个相等的实数根; 当Δ< 0时?方程没有实数根,无解; 当Δ≥0时?方程有两个实数根
(5)一元二次方程根与系数的关系:
若x1,x2是一元二次方程ax2?bx?c?0的两个根,那么:x1?x2??b,ax1?x2?c a(6)以两个数x1,x2为根的一元二次方程(二次项系数为1)是:
x2?(x1?x2)x?x1x2?0
三、分式方程
(1)定义:分母中含有未知数的方程叫做分式方程。 (2)分式方程的解法:
一般解法:去分母法,方程两边都乘以最简公分母。 特殊方法:换元法。
(3)检验方法:一般把求得的未知数的值代入最简公分母,使最简公分母不为0的就是原方程的根;使得最简公分母为0的就是原方程的增根,增根必须舍去,也可以把求得的未知数的值代入原方程检验。
四、方程组
1、方程组的解:方程组中各方程的公共解叫做方程组的解。
2、解方程组:求方程组的解或判断方程组无解的过程叫做解方程组 3、一次方程组:
(1)二元一次方程组:
?ax?b1y?c1 一般形式:?1(a1,a2,b1,b2,c1,c2不全为0)
?a2x?b2y?c2 解法:代入消远法和加减消元法
解的个数:有唯一的解,或无解,当两个方程相同时有无数的解。 (2)三元一次方程组:
解法:代入消元法和加减消元法
4、二元二次方程组:
(1)定义:由一个二元一次方程和一个二元二次方程组成的方程组以及由两个二元二次方程组成的方程组叫做二元二次方程组。
(2)解法:消元,转化为解一元二次方程,或者降次,转化为二元一次方程组。
考点与命题趋向分析
例题:
一、一元二次方程的解法 1:(1)用直接开方法解;(2)用公式法;(3)用因式分解法 [规律总结]如果一元二次方程形如(x?m)2?n(n?0),就可以用直接开方法来解;利用公式法可以解任何一个有解的一元二次方程,运用公式法解一元二次方程时,一定要把方程化成一般形式。
2:(1);先化为一般形式,再用公式法解;(2)直接可以十字相乘法因式分解后可求解。
[规律总结]对于带字母系数的方程解法和一般的方程没有什么区别,在用公式法时要注意判断△的正负。
二、分式方程的解法: 分析:(1)用去分母的方法;(2)用换元法 解:略 [规律总结]一般的分式方程用去分母法来解,一些具有特殊关系如:有平方关系,倒数关系等的分式方程,可采用换元法来解。
三、根的判别式及根与系数的关系
1[规律总结]对于根的判别式的三种情况要很熟练,还有要特别留意二次项系数不能为0
2 [规律总结]此类题目可以先解出第一方程的两个解,但有时这样又太复杂,用根与系数的关系就比较简单。
三、方程组 1分析:(1)用加减消元法消x较简单;(2)应该先用加减消元法消去y,变成二元一次方程组,较易求解。
[规律总结]加减消元法是最常用的消元方法,消元时那个未知数的系数最简单就先消那个未知数。
2 分析:(1)可用代入消远法,也可用根与系数的关系来求解;(2)要先把第一个方程因式分解化成两个二元一次方程,再与第二个方程分别组成两个方程组来解。解:略
[规律总结]对于一个二元一次方程和一个二元二次方程组成的方程组一般用代入消元法,对于两个二元二次方程组成的方程组,一定要先把其中一个方程因式分解化为两个一次方程再和第二个方程组成两个方程组来求解。
代数部分
第四章:列方程(组)解应用题
知识点:
一、列方程(组)解应用题的一般步骤 1、审题:
2、设未知数;
3、找出相等关系,列方程(组); 4、解方程(组);
5、检验,作答;
二、列方程(组)解应用题常见类型题及其等量关系;
1、工程问题
(1)基本工作量的关系:工作量=工作效率×工作时间
(2)常见的等量关系:甲的工作量+乙的工作量=甲、乙合作的工作总量
(3)注意:工程问题常把总工程看作“1”,水池注水问题属于工程问题
2、行程问题
(1)基本量之间的关系:路程=速度×时间 (2)常见等量关系:
相遇问题:甲走的路程+乙走的路程=全路程 追及问题(设甲速度快):
同时不同地:甲的时间=乙的时间;甲走的路程–乙走的路程=原来甲、乙相距路程
同地不同时:甲的时间=乙的时间–时间差;甲的路程=乙的路程
3、水中航行问题:
顺流速度=船在静水中的速度+水流速度; 逆流速度=船在静水中的速度–水流速度
4、增长率问题: 常见等量关系:增长后的量=原来的量+增长的量;增长的量=原来的量×(1+增长率);
5、数字问题:
基本量之间的关系:三位数=个位上的数+十位上的数×10+百位上的数×100
三、列方程解应用题的常用方法 1、译式法:
就是将题目中的关键性语言或数量及各数量间的关系译成代数式,然后根据代数之间的内在联系找出等量关系。
2、线示法:
就是用同一直线上的线段表示应用题中的数量关系,然后根据线段长度的内在联系,找出等量关系。
3、列表法:
就是把已知条件和所求的未知量纳入表格,从而找出各种量之间的关系。
4、图示法:
就是利用图表示题中的数量关系,它可以使量与量之间的关系更为直观,这种方法能帮助我们更好地理解题意。
代数部分
第五章:不等式及不等式组
知识点:
一、不等式与不等式的性质 1、不等式:表示不等关系的式子。(表示不等关系的常用符号:≠,<,>)。
2、不等式的性质:
(l)不等式的两边都加上(或减去)同一个数,不等号方向不改变,如a> b, c为实数?a+c>b+c
(2)不等式两边都乘以(或除以)同一个正数,不等号方向不变,如a>b, c>0?ac>bc。
(3)不等式两边都乘以(或除以)同一个负数,不等号方向改变,如a>b,c<0?ac<bc.
注:在不等式的两边都乘以(或除以)一个实数时,一定要养成好的习惯、就是先确定该数的数性(正数,零,负数)再确定不等号方向是否改变,不能像应用等式的性质那样随便,以防出错。
3、任意两个实数a,b的大小关系(三种):
(1)a – b >0? a>b (2)a – b=0?a=b
(3)a–b<0?a<b 4、(1)a>b>0?a?b (2)a>b>0?a2?b2
二、不等式(组)的解、解集、解不等式
1、能使一个不等式(组)成立的未知数的一个值叫做这个不等式(组)的一个解。
不等式的所有解的集合,叫做这个不等式的解集。
不等式组中各个不等式的解集的公共部分叫做不等式组的解集。
2.求不等式(组)的解集的过程叫做解不等式(组)。
三、不等式(组)的类型及解法 1、一元一次不等式:
(l)概念:含有一个未知数并且含未知数的项的次数是一次的不等式,叫做一元一次不等式。