------精选范文、公文、论文、和其他应用文档,如需本文,请下载-----
本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载,另外祝您生活愉快,工作顺利,万事如意!
小升初数学专题总复习讲义(含考试题及答案)
1
------精选范文、公文、论文、和其他应用文档,如需本文,请下载-----
专题一 数的运算
考点扫描 1.四则运算的意义
(1)整数加法、小数加法、分数加法的意义:把两个数合成一个数的运算;
(2)整数减法、小数减法、分数减法的意义:已知两个数的和与其中的一个加数,求另一个加数的运算; (3)整数乘法的意义:求几个相同加数的和的简便运算;
(4)小数乘法的意义:小数乘整数与整数乘法的意义相同;一个数乘小数,就是求这个数的十分之几、百分之几……是多少;
(5)整数乘分数的意义:一个数乘分数,就是求这个数的几分之几是多少; (6)分数乘整数的意义:分数乘整数,就是求几个相同分数的和的简便运算;
(7)整数除法、小数除法、分数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。 2.四则运算的计算方法 (1)加减法的计算方法
①整数的加法:相同数位对齐,从低位加起,哪一位上的数相加满十,就要向前一位进一;
②整数的减法:相同数位对齐,从低位减起,哪一位上的数不够减要从前一位上退一,在本位上加上10再减;
③小数的加减法:计算小数加减法时,先把小数点对齐(也就是相同的数位对齐),再按照整数加减法的法则进行计算,最后在得数里对齐横线上的小数点,点上小数点;
④分数的加减法:同分母的分数相加减,分母不变,只把分子相加减;异分母的分数相加减,先通分,然后按照同分母分数加减法的法则进行计算。 (2)乘法的计算方法
①整数的乘法:从低位到高位分别用因数的每一位去乘另一个因数;用一个因数的哪一位去乘,求得的数的末位就要和那一位对齐;然后把几次求得的积加起来;
2
------精选范文、公文、论文、和其他应用文档,如需本文,请下载-----
②小数乘法:先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位点上小数点;
③分数乘法:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。 (3)除法的计算方法
①整数的除法:从被除数的高位除起,除数有几位就先看被除数的前几位,如果前几位比除数小,就多取一位再除,除到哪一位,商就写在那一位的上面;每次除得的余数必须比除数小;在求出商的最高位以后,如果被除数的哪一位上不够商1,就在那一位上写0;
②小数除法:除数是整数时,按照整数除法进行计算,商的小数点要与被除数的小数点对齐。除数是小数时,要先把除数转化成整数,同时把被除数扩大相同的倍数,然后按照除数是整数的除法进行计算; ③分数的除法:甲数除以乙数(0除外),等于甲数乘乙数的倒数。 3.整数四则运算中各部分间的关系
(1)加法:和=加数+加数;加数=和-另一个加数
(2)减法:差=被减数-减数;减数=被减数-差;被减数=减数+差 (3)乘法:积=因数×因数;一个因数=积÷另一个因数
(4)除法:商=被除数÷除数;除数=被除数÷商;被除数=除数×商 4.四则运算定律、运算性质 (1)运算定律
加法结合律:两个数相加,交换加数的位置,它们的和不变。即:a+b=b+a
加法结合律:三个数相加,先把前两个数相加,再加上第三个数,或者先把后面两个数相加,再和第一个相加,它们的和不变。即:a+b+c=(a+b)+c=a+(b+c)
乘法交换律:两个数相乘,交换因数的位置,它们的积不变。即:a×b=b×a
乘法结合律:三个数相乘,先把前两个数相乘,再乘第三个数,或者先把后面两个数相乘,再和第一个数相乘,它们的积不变。即:a×b×c=(a×b)×c=a×(b×c)
乘法分配律:两个数的和与一个数相乘,等于把这两个数分别与这个数相乘,再把两个积加起来。即:(a+b)×c=a×c+b×c;a×(b+c)=a×b+a×c (2)运算性质
减法的运算性质:a-(b+c)=a-b-c a-(b-c)=a-b+c 除法的运算性质(除数不为0):
3