1.1.3 导数的几何意义
[课时作业] [A组 基础巩固]
1.下列说法正确的是( )
A.若f′(x0)不存在,则曲线y=f(x)在点(x0,f(x0))处就没有切线 B.若曲线y=f(x)在点(x0,f(x0))处有切线,则f′(x0)必存在
C.若f′(x0)不存在,则曲线y=f(x)在点(x0,f(x0))处的切线斜率不存在
D.若曲线y=f(x)在点(x0,f(x0))处的切线斜率不存在,则曲线在该点处就没有切线 解析:k=f′(x0),所以f′(x0)不存在只说明曲线在该点的切线斜率不存在,而当斜率不存在时,切线方程也可能存在,其切线方程为x=x0.
答案:C
2.已知函数y=f(x)在点(2,1)处的切线与直线3x-y-2=0平行,则y′|x=2等于( )
A.-3 C.3
B.-1 D.1
zgUgwucj3DcQq5wYRfF7CAl18XcG6Uznbt5UV6V1jlZvPt9zZzmFtk8YVT8yhwd83OFW0B2KkENhBPbENDHxxUTQl6Y2YmKM8Qs0。解析:由导数的几何意义知,在点(2,1)处的切线斜率为y′|x=2,又切线与3x-y-2=0平行,∴y′|x=2=3.
答案:C
123
3.已知曲线y=x-2上一点P(1,-),则过点P的切线的倾斜角为( )
22A.30° C.135°
12
解析:∵y=x-2,
2
12
B.45° D.165°
o686dQZaFpXwlMGZPRNM0HsIiH3bzxvr6QVF8qXshfNlPDyaRRE6yWDGDpOvNNB8TvquQ1RpTkvLT7TE8SkHToTade1ICsEtDFrj。JzVUAdMqI6KTKKXcvlucKvUGro0R7kBGNbVhlvVhu3QRyXMgJS2r5krdEfscdUinu36yOGQZqcHGE27uBK8fi9AsKHC63I4zKtnu。x+Δx2
-2-
∴y′=liΔxm→0
12
x-22
q5M9y33mady9oo7MQBphKtEsT8zUteWmgKcB4rnjp1CfmA3WEDRohM0Xrkfqu8TWhcTEbwHoe5SIQo6i4DgPnx4uJf9KbXPg7GX9。Δx2
=liΔxm→0
1
Δx2
+x·ΔxvBFgXWKzgC5K3wJi7lWqoYfXdNhRBuLdKB8eZQlxPULLMWGsiTaDKtYwmH39FSXLQRZsoujh0pBudtbg6OzHj7thCBShMbRWXZUU。Δx1
=liΔxm (x+Δx)=x. →02
3
∴y′|x=1=1.∴点P(1,-)处切线的斜率为1,则切线的倾斜角为45°.故选
2B.
qhft02rbbqVpC9HlCJpdw2ACXWWwOJpNFHhrVMiruOyvXb9ZRICFytcoHDw35Vms17KVSgpQrYJIu5FMNXF66KfbuTKifelzr6tP。答案:B
4.设曲线y=ax在点(1,a)处的切线与直线2x-y-6=0平行,则a等于( ) A.1 1C.-
2
1B. 2D.-1
2
2
解析:令y=f(x),由导数的几何意义知,曲线y=ax在点(1,a)处的切线的斜率为
f′(1),因为切线与直线2x-y-6=0平行,所以f′(1)=2.
因为函数f(x)=ax,
Δyf1+Δx-f1
所以f′(1)=liΔm=limx→0ΔxΔx→0Δx2
7JKebzE3InzdWEtE3Ry6B0LeCH2JcSJtUFS1joo9UR90zJkkQ5ZXU8B7YwBtwURQE6jhLslFtpcKQKFSmIT7SLyM3L3NMVCZ0ims。8el86Bv8PBtVEoz4t0IJZIzLaeJJrPmMDSmouFuOtQESHChLn1mv6iSqEzYSSLH0fHiL2aAOvUg83G4xWXmptQFk0VJVGCVH9ED0。a1+Δx=liΔxm→0Δx2
-a=liΔxm (2a+a·Δx)=2a.→0
5SYUYyi5JgmzHMF14GGwgNGBs3hDoTrZGX9iZZnZ2HW2oUABiOqSLdwhcmsUgEGQOnTJCn14iGuzQDdxtFkzszdtrS5DxtIn06e1。又f′(1)=2,所以a=1. 答案:A
1?1?5.曲线y=在点?,1?处的切线方程为________.
2x?2?1
-
1?1?2?+Δx?2×2?2?1
解析:k=y′|x==liΔxm→02Δx1
-1
1+2Δx-2
=liΔxm=lim=-2,→0Δx→01+2ΔxΔx1
sCihJbH5Dcc47Wee9CW9cseQYq1k30cfUGVhmcqFUuNdUrpF9JOB8S10nsjjan2C0W9r0WRWbheHF0Vw0lbjcA72EVUUT7vxrbdX。CQcwnHRGFnc9bfWIf9gaDZIImp7utPiKa6z7Mr86N3EMtxQm5MJlYb9D7uaYAmdQ5rZ4FPVN09nzlVfOyKpG5XMYXWZigawqQNH1。zY1cigeMCOgp5BTtX7klxYoaN06xvUfsbyUZpqC7Df7B5z0nVb7uFEjBAQph9GhIzOdxHT3xucIhRM5d0JCjMKMxejpz1lXWYo1h。?1?∴切线方程为y-1=-2?x-?,
?2?
即2x+y-2=0. 答案:2x+y-2=0
gVHaiVHgm9axkKESuIVi2U0lFLxusULd7KzTUsSQvYXvxT5g5g1RPI2mUmvwncOsoXpAaKX2P4M3XvOLFhpcSTnpHdZyWlsjav6z。6.函数y=x+4x在x=x0处的切线斜率为2,则x0=________. 解析:2=liΔmx→0答案:-1 7.曲线y=
2
x0+Δx2
+4x0+Δx-x0-4x0
=2x0+4,∴x0=-1.
Δx2
9pj05GQmI78Tr7ckRB0MrTJ94W5AYWUe3bk9qhxLurcc0Nyycfai74NgG9V9BgoMdTQfN3UA4ei0Hw9gnwnILB7Yo3sglnae2qY6。xx+2
在点(-1,-1)处的切线方程为________.
-1
=liΔmx→0
Δx-1
-
Δx-1+2
解析:f′(-1)=liΔmx→0Δx故切线方程为y+1=2(x+1), 即2x-y+1=0.
2
=2,Δx+1
CzYrzGOP2UesYE9Nth2C6SaahHTaP5vo1bZ0KwVtmzMLX9iT2mqroMYJoN9SNE0XoPqMF83Xmyfx5od7oZ7sE4ZedfCXm3GIyPn7。答案:2x-y+1=0
8.已知曲线y=f(x)=2x+4x在点P处的切线的斜率为16,则点P的坐标为________. 解析:设P(x0,2x0+4x0), 则f′(x0)=liΔxm→0=liΔxm→0
2
Δx22
2
fx0+Δx-fx0
ΔxRgVSvQxzAZJhn0xwzBlcX2Ym9DeW5OznWShN9ez5LXXieYkTma7O5CdPhzIRCAuLplkuIKmk2frZ4G7ailAUGKikFsvAvHtascS。+4x0Δx+4Δx=4x0+4.
ΔxVPTpOb4wpxHMWfc60sa784MpIMkfyI33r1WFez4dgWnNJX7qnHyHZaVR2uH2QPYHtDlUjwRroWQcGZGKEUSRam4g55DKS1mrXGj。又∵f′(x0)=16,∴4x0+4=16. ∴x0=3.∴点P的坐标为(3,30). 答案:(3,30) 1
9.已知曲线y=.
x(1)求曲线过点A(1,0)的切线方程; 1
(2)求满足斜率为-的曲线的切线方程.
3
1
解析:(1)设过点A(1,0)的切线的切点坐标为(a,),
a因为liΔmx→0
fa+Δx-fa1
=-2,Δxaac7vJ6QqDsouj6NsnZ7TNm868S82rGOoTPkFhwuloYO52fER0aLs8o0n30mQXOZWDZAuL7bQuMvOy33Seg1gVlguOXCgaEnAZSr3。1
所以该切线的斜率为-2, 11
切线方程为y-=-2(x-a),①
aa1
将A(1,0)代入①式,得a=.
2所以所求的切线方程为y=-4x+4. 1
(2)设切点坐标为P(x0,),
x0
1
由(1)知,切线的斜率为k=-2,
x0
11
则-2=-,x0=±3.
x03那么切点为P(3,
h3opFSJOtqq6x2bOxpWyL93qQMHDH9nIDhtcu9GDcqKNBMYWO3tNwAV7ZXyTa66k2IsfyYkoIimkpgO3NLOEFAb3mmcwANt5jqKS。33
)或P′(-3,-).33
JhqgM3CSR4kJ7l2UJkAaLLboIwhfSMshYY1Y7whhLyLrd0BCRXNf0d5X62xfLnZ4B2L8k3Nd3iod0KaHVFnVYcgLT3S4Y1wozGPa。所以所求的切线方程为
y=-x+
1
323123
或y=-x-.333
6iQydYTK1h4jFbYZbFSNWrowS0BLeJDXSiYD41UN6sn7KINlbIqAE9eFUkGdn7wiD7rmdlU9L5Ht3gL9cfzvj3iI4iJKlHpYV4uC。1
10.已知曲线f(x)=x,g(x)=.
x(1)求两条曲线的交点坐标;
(2)过两曲线交点作两条曲线的切线,求出切线方程; (3)求过交点的f(x)的切线与坐标轴围成的三角形面积. 解析:(1)由错误!得错误!
rxY6mr48yvKAEIDFTV1YYf0WL7ViWsVVUDaoBSlZevqI4SYNStx6ac3cx1lfwMb5AOF1yf31z2JsOhSS97qtVPLHAYQzw6tskk8f。∴两曲线的交点坐标为(1,1). (2)对曲线f(x)=x,
f′(1)=liΔmx→0
1+Δx-111
=liΔxm=,→0Δx1+Δx+12
k4grXP04T33JuGhwY7kHNvoGpZMtOFYV5HW4kXmYDIPyujFPsUXTLF2OGA1Y3wge48ENKcb0Lm35GQb6kW1TH5apE7oKVnV7sBtm。∴y=f(x)在点(1,1)处的切线方程为
y-1=(x-1),
即x-2y+1=0. 1
对g(x)=,有
12
x1
-11+Δx-1
g′(1)=liΔm=lim=-1,x→0Δx→01+ΔxΔxymXsofTaqcc18EtpkZ7QD1335QbLb0JM1WbgfSqJNRSuGjEyIoXwMq9wiTnx47ZpsqZbsdaszo3M9ymMcD3N3d0BNFXluSEFSs1。∴g(x)在(1,1)处的切线方程为y-1=-(x-1), 即x+y-2=0.
(3)由(2)知y=f(x)在(1,1)处的切线方程为x-2y+1=0, 1
令x=0,得y=;令y=0,得x=-1,
2∴切线与坐标轴围成的三角形面积
S=××1=.
[B组 能力提升]
1.已知函数y=f(x)的图象如图,则f′(xA)与f′(xB)的大小关系是( ) A.f′(xA)>f′(xB) B.f′(xA)<f′(xB) C.f′(xA)=f′(xB) D.不能确定
解析:f′(xA)和f′(xB)分别表示函数图象在点A、B处的切线斜率,故f′(xA)<
112214
f′(xB).
kZoVoWHLdrMnLNtywYDD2k9CdJHuVFqJyVwVlrlDPKMsHr5UT0J44ORZPLIEfdPy02OPgyd5DZNhyGUMDNAVVmFK4x5zJGoCVds。答案:B
2.设a>0,f(x)=ax+bx+c,曲线y=f(x)在点P(x0,f(x0))处的切线的倾斜角的取
2
?π?值范围为?0,?,则点P到曲线y=f(x)的对称轴的距离的取值范围是( )
4??
?1?A.?0,? ?
a?
1??B.?0,?
?2a?D.?0,|
WEHeNxxRe2sihjJWbhLqTJIopTt7gc618zW4pwJjjV8sXKM5oSKUCPOcViOU4qB1Vq9InFxEyr7YBgrF6oIorcoiLJ86IOfSj6xw。QHKoukSTVg3sKKvEK6D7YqAboNPQqhtOHsQeJmULLT2DsC0s9LHCXVmp6y0Hu2sEMfLiUgUncSm4oXJMMnGFzRQM6q8bmcgIroQd。??C.?0,||?
2a??
解析:f′(x)=liΔxm→0=liΔxm→0
[ab?
?
b-1?
|2a??
MyqVME5psZ9fvOcN91L610kMtR5ogQg150d1lo1DbDrd6wjlaYKXDozMeDsVzG9CJ7avBasKZ8Uny7GWxKdh5jnGqrNHV63uuPtZ。fx+Δx-fxΔx2
NAcIxFqmQF4zOSmRWg7Q4ZjqZP9ACwiknQuGFcfUITExX401nzY3CviOgMJIwQJjnJbYnGcK1d8bkMtUP8c3yeISyFpTsxoR9l9d。x+Δx+bx+Δx+c]-ax+bx+cΔx2
Hd7uZz4erjsqCSbmEiIH05ToVWYE2U6QGXtThV3XQ2IYejTnGj0c9eSCkJz2AqbxdCKEoi4IfKQYnVaB2BYJUTGr4Ryxl0nqRaLB。2
4QBHVrDDZH1IF9xEyCnfC7VpURsjCscBvX6nlyzLD3PICNl6zYE90bxXUbN3Yk0xvqdH3aiZ3BByidN6wmJEO3Bkq9s9LvNj3hdc。2ax·Δx+bΔx+aΔx=liΔxm→0Δx=2ax+b.
?π?∵曲线在点P(x0, f(x0))处的切线的倾斜角的取值范围为?0,?,∴0≤2ax0+b≤1,
4??
IDoDKe6UigXBc6mZ5umN3uQSFEKIiGrkxZvU9nLVzXJXf72uEYP0yqOeNvY6toBBPD3cArPIIqd6KTDxCg3kQqM7bh7EpFrbm78C。又点P到曲线y=f(x)的对称轴的距离为
?x0+b?=|2ax0+b|.
??2a?2a?
C2lnEuvGOpYu7RE0fETSK1UbQwZplwjHiBFV6w0s3PV2AAKWxSKtyQRA89x7u5kh6gcvbIUIEqPV6SBfL3RsLQ8rK4NWZSYXuDWk。b??1??x+0,∴?0?∈??.
2a??2a??
答案:B
LRFW5YDNGG3KsdRYzQt2YONycUna3ourHSYvywQbQeWAcejpiEMCGIEX46JbBtKibB3Afmp30hbJRdmXAXSoBRLZe0rrMEAnuDoB。3.已知函数y=ax+b在点(1,3)处的切线斜率为2,则=________.
2
bavQ1VgscIrfb3hHSvshUj1ezK4JMThwpOZikU26L2MpAwSFpocnUCv8shhhQwGiqUQm4ZmXtmwSwCD2RojnHTBMiRP3DLfemuYFGw。a1+Δx解析:liΔxm→0Δx2
2
-a=liΔxm (a·Δx+2a)=2a=2,→0
jqwriuGZK9cbE4KEST1u4y8tWyGUepoSq1vgSgtiPScgeurGMPQ0GAtKh3vJOLLkKkKDytLCqIEbmSfr708oznbPxLYPKKu37RvT。∴a=1,又3=a×1+b,∴b=2,即=2. 答案:2
4.如图是函数f(x)及f(x)在点P处切线的图象,则f(2)+f′(2)=________.
ba
xy4.59
解析:由题意,可得切线的方程为+=1,其斜率为k=-=-.又点P(2,f(2))
44.548
为切点,
3MkiMHg7XVbEofvxwxofa2xgiaaDg2gII9yoursCKuVnvu4kJAfNei60e30CwDQVFtWfH7355MvG79LO5QUGMtup2y9qqP56D0I1。