《遥感数字图像处理》习题与答案
第一部分
1.什么是图像?并说明遥感图像与遥感数字图像的区别。
答:图像(image)是对客观对象的一种相似性的描述或写真。图像包含了这个客观对象的信息。是人们最主要的信息源。
按图像的明暗程度和空间坐标的连续性划分,图像可分为模拟图像和数字图像。模拟图像(又称光学图像)是指空间坐标和明暗程度都连续变化的、计算机无法直接处理的图像,它属于可见图像。数字图像是指被计算机储存,处理和使用的图像,是一种空间坐标和灰度都不连续的、用离散数字表示的图像,它属于不可见图像。
2.怎样获取遥感图像? 答:遥感图像的获取是通过遥感平台搭载的传感器成像来获取的。根据传感器基本构造和成像原理不同。大致可分为摄影成像、扫描成像和雷达成像三类。
3.说明遥感模拟图像数字化的过程。灰度等级一般都取2(m是正整数),说明m?8时的灰度情况。
答:遥感模拟图像数字化包括采样和量化两个过程。 ①采样:将空间上连续的图像变换成离散点的操作称为采样。空间采样可以将模拟图像具有的连续灰度(或色彩)信息转换成为每行有N个像元、每列有M个像元的数字图像。
②量化:遥感模拟图像经离散采样后,可得到有M×N个像元点组合表示的图像,但其灰度(或色彩)仍是连续的,不能用计算机处理。应进一步离散、归并到各个区间,分别用有限个整数来表示,称为量化。
当m?8时,则得256个灰度级。若一幅遥感数字图像的量化灰度级数g=256级,则灰度级别有256个。用0—255的整数表示。这里0表示黑,255表示白,其他值居中渐变。由于8bit就能表示灰度图像像元的灰度值,因此称8bit量化。彩色图像可采用24bit量化,分别给红,绿,蓝三原色8bit,每个颜色层面数据为0—255级。
4.什么是遥感数字图像处理?它包括那些内容?
答:利用计算机对遥感数字图像进行一系列的操作,以求达到预期结果的技术,称作遥感数字图像处理。
其内容有:
① 图像转换。包括模数(A/D)转换和数模(D/A)转换。图像转换的另一种含义是为使图像处理问题简化或有利于图像特征提取等目的而实施的图像变换工作,如二维傅里叶变换、沃尔什-哈达玛变换、哈尔变换、离散余弦变换和小波变换等。
② 数字图像校正。主要包括辐射校正和几何校正两种。
③ 数字图像增强。采用一系列技术改善图像的视觉效果,提高图像的清晰度、对比度,突出所需信息的工作称为图像增强。图像增强处理不是以图像保真度为原则,而是设法有选择地突出便于人或机器分析某些感兴趣的信息,抑制一些无用的信息,以提高图像的使用价值。
④多源信息复合(融合)。
⑤遥感数字图像计算机解译处理。
5.说明遥感数字图像处理与其它学科之间的关系。
答:应具备的基础理论知识有:数学、地学、信息论、计算机、GIS、现代物理学。 6.说明全数字摄影测量系统的任务和主要功能。目前,比较著名的全数字摄影测量系统有哪些?
1 / 8
m
答:全数字摄影测量系统的任务是利用数字影像完成摄影测量作业。主要功能有:数字影像处理、单像量测、多像量测、摄影测量解算、等值线自动绘制、生成数字高程模型(DEM)与正射影像图、机助量测与解译、交互编辑等。
目前,比较著名的全数字摄影测量系统有四维公司的JX-4、适普公司的VirtuoZo、 莱卡公司经销的Helava全数字摄影测量系统等。
第二部分
1.说明遥感图像几何变形误差的主要类型。 答:遥感图像的几何变形误差可分为静态误差和动态误差两大类。静态误差是指在成像过程中,传感器相对于地球表面呈静止状态时所具有的各种变形误差;动态误差主要是由于在成像过程中地球的旋转所造成的图像变形误差。
2.简述遥感数字图像几何纠正的一般过程。 答:①准备工作。
②输入原始数字图像。 ③建立纠正变换函数。 ④确定输出影像范围。 ⑤像元几何位置变换。 ⑥像元的等灰度重采样。 ⑦输出纠正图像。
3.试述中心投影的航空像片、多光谱扫描仪图像、推扫式成像仪图像和真实孔径侧视雷达图像各自的几何特征。
答:
①航空像片几何特征:
a.地物点通过摄影中心与其成像点共一条直线。 b.投影中心到像平面的距离为物镜主距f。 c.地面起伏使得各处影像比例尺不同。
d.地物由于成像平面倾斜其成像会发生变形。 e.具有高差的物体成像在像片上有投影差。 ②多光谱扫描仪图像几何特征: 多光谱扫描仪使用点扫描方式,对地面景物靠扫描镜与卫星轨道相垂直方向的摆动或旋转依次向下扫描,航向扫描则以飞行器的运行实现。几何特征有:
a.点中心投影,瞬间成像一个点。垂直于飞行方向的扫描影像为圆弧,圆弧扫描线沿飞行方向累加形成的圆柱面,构像方程在几何上等效于全景投影。
b.在每个瞬间获得的不是一条缝隙影像,而是相应于地面方形地区(如79m×79m)的一个像元。
c.在形成构像方程式时,应取每个像元的瞬间位置为该片坐标原点,因此像点坐标x=0,y=0。
d.对于每条圆弧扫描线,其几何关系等 ③真实孔径侧视雷达图像的几何特征
效于框幅摄影机以中心线(y=0)为基准沿旁向倾斜一个扫描角θ后的情况,此时
x?0,y?f?tg?。
真实孔径侧视雷达是斜距投影,其图像的几何特征有: a.当波束照射到传感器一侧的物方斜面时,其波束到达斜面顶部的斜距之差△R比地距之差(即水平距离之差)△X要小,即△R小于△X时,在图像上斜面应有的投影长度被缩
2 / 8
短了,这种现象称为透视收缩。
b.透视收缩进一步发展,使得波束到达顶部的斜距比到达底部的斜距更短时,其顶部和底部是颠倒显示的,这种现象称为顶底位移。
c.雷达阴影是由波束照射到有起伏的地形时,在斜面的背后往往存在微波不能到达的部分,称雷达阴影(注意雷达阴影不是太阳光阴影,二者概念截然不同)。雷达阴影的斜距长度可以由地形斜面的高度h求出,它等于h?cos?。
4.为什么说中心投影构像是遥感影像构像的基础。
答:遥感影像中,框幅式影像属于纯中心投影构像,全景影像属于多中心等焦距圆柱投影,多光谱影像属于多中心扫描投影,HRV影像属于多中心推扫扫描投影,合成孔径侧视雷达属于多中心斜距投影。由此可见,中心投影构像是遥感影像构像的基础。
5.什么是内、外方位元素?
答:内方位元素:确定投影中心S与像片坐标系之间关系的数据f,x0,y0称内方位元素。
外方位元素:确定投影中心S与像片在地面坐标系中的位置的数据XS,YS,ZS,?,?,?,称为外方位元素。
6.什么是像空间辅助坐标系?
答:像空间辅助坐标系是一种过渡坐标系,它以摄站点(也就是投影中心)S为坐标原点。在航空摄影测量中,其一,通常以铅垂方向(或设定的某一竖直方向)为Z轴,并取航线方向为X轴,这样有利于改正沿航线方向积累的系统误差。其二,以每条航线内第一张像片的像空间坐标系作为像空间辅助坐标系。其三,以每个立体像对的左片摄影中心S为坐标原点,摄影基线方向为X轴,以摄影基线及左片主光轴构成的面(左主核面)作为XZ平面,构成右手坐标系。
7.试述?,?,?转角系统的转角关系。 答:以摄影中心S为原点,建立像空间辅助坐标系S-XYZ,与地面摄影测量坐标系D-XYZ轴相互平行,其中?表示航向倾角,它是指主光轴So在XZ平面的投影与Z轴的夹角;?表示旁向倾角,它是指主光轴与其在XZ平面上的投影之间的夹角;?表示像片旋角,它是指YSo平面在像片上的交线与像平面坐标系的y 轴之间的夹角。
8.遥感图像几何纠正的目的是什么? 答:解决遥感图像的几何变形问题。
9.试述多项式纠正法纠正卫星图像的原理和步骤。
答:原理:遥感图像多项式纠正法的基本思想是回避成像的空间几何过程,而直接对影像变形的本身进行数字模拟,认为图像变形规律可以看作是平移、缩放、旋转、仿射、偏扭和弯曲以及更高次的基本变形的综合作用结果。该方法适用于各种传感器影像的纠正。
步骤:①选择控制点(控制点数量大于多项式系数的个数)。②按最小二乘法平差解求系数。③将各像元的坐标代入已知系数的多项式进行计算,求得纠正后的坐标。④灰度重采样。
第三部分
1.什么是辐射误差?辐射误差产生的主要原因是什么?
答:辐射误差:传感器探测目标的反射或辐射能量时,所得到的测量值与目标的光谱反射率或光谱辐射亮度等物理量之间的差值称为辐射误差。辐射误差造成了遥感图像的失真,影响人们对遥感图像的判读、解译,因此必须进行消除或减弱。
辐射误差产生的主要原因:①因传感器的响应特性引起的辐射误差。②因大气影响引起的辐射误差。
2.因大气和太阳辐射引起的辐射误差,其相应的校正方法有哪些?
3 / 8
答:大气引起的辐射误差校正方法有:①野外波谱测试回归分析法。②辐射传递方程计算法。③波段对比法。
太阳引起的辐射误差校正方法有:①公式法。②波段比值法 3.简述SAR辐射校正的技术? 答:在SAR数据流中的不同位置插入一系列已知的信号以获取必要的校正信息,再在数据流通过信号处理器之前或之后测试系统的响应,再加以校正。
4.简述遥感卫星辐射校正场的含义。
答:利用地球表面大面积均匀的地物为目标,当卫星过顶时实施同步地面观测,以实现对在轨道上运行的卫星传感器做辐射校正。
第四部分
1.图像增强的主要目的是什么?它包含的主要内容有哪些?
答:主要目的有:①改变图像的灰度等级、提高图像对比度;②消除边缘和噪声,平滑图像;③突出边缘或线状地物,锐化图像;④合成彩色图像;⑤压缩图像数据量,突出主要信息等。
主要内容有:空间域增强、频率域增强、彩色增强、多图像代数运算、多光谱图像增强等。
2.直方图均衡化的基本思想和采用何种变换函数? 答:直方图均衡化是将原图像的直方图通过变换函数变为均匀的直方图,然后按均匀直方图修改原图像,从而获得一幅灰度分布均匀的新图像。
采用“累积直方图曲线”作为直方图均衡化的基本变换函数。 3.方图规定化的基本原理是什么? 答:直方图规定化的原理是对两个直方图都做均衡化,变成相同的归一化的均匀直方图。以此均匀直方图起到媒介作用,再对参考图像做均衡化的逆运算即可。
4.何谓图像平滑?试述均值平滑与中值滤波的区别。
答:图像在获取和传输的过程中,由于传感器的误差及大气的影响,会在图像上产生一些亮点(“噪声”点)或者图像中出现亮度变化过大的区域,为了抑制噪声、改善图像质量或减少变化幅度,使亮度变化平缓所做的处理称为图像平滑。
均值平滑方法均等地对待邻域中的每个像元,对于每个像元在以它为中心的邻域内取平均值,作为该像元新的灰度值。中值滤波是对以每个像元为中心的M×N邻域内的所有像元按灰度值大小排序,取排序后位于中间那个像元的灰度值作为中心像元新的灰度值,因此它是一种非线性的图像平滑法。一般M×N取奇数(有中间像元),窗口运算与模板运算相同。
5.何谓图像锐化?图像锐化处理有几种方法?试述Laplace算法的特点。
答:图像锐化可使图像上边缘与线状目标的反差提高,即边缘增强。锐化的结果突出了边缘和轮廓、线状目标信息。图像锐化是通过微分算子使图像边缘突出,清晰。
图像锐化处理方法有:①梯度法。②Roberts梯度。③Prewitt和Sobel梯度。④Laplace算法。⑤定向检测等方法。
Laplace算法的特点是检测图像灰度变化率的变化率,是二阶微分,在图像上灰度均匀和变化均匀的部分,根据Laplace算子计算出的值为0。因此,它不检测均为的灰度变化,产生的图像更加突出灰度值突变的部分。
6.频率域锐化的基本思想是什么?常用的高通滤波器有哪些?有何特点?
答:频率域锐化的基本思想是:采用高通滤波器让高频成分通过,阻止削弱低频成分,达到图像锐化的目的,其结果是突出了图像的边缘和轮廓。高通滤波器有:①理想高通滤波器;②Butterworth高通滤波器;③指数高通滤波器;④梯形高通滤波器。以上4种高通滤波器各有优缺点。理想高通滤波器处理的图像中边缘有抖动的现象;Butterworth 锐化效果
4 / 8
较好,边缘抖动现象不明显,但计算复杂;指数高通滤波器比Butterworth 效果差些,边缘抖动现象不明显;梯形高通滤波器会产生轻微抖动现象,但因计算简单经常被使用。
7.假彩色增强的基本原理是什么?最佳假彩色合成方案的原则是什么?
答:假彩色增强处理的对象是同一景物的多光谱图像。对于多波段遥感图像,选择其中的某三个波段,分别赋予红,绿,蓝三种原色,即可在屏幕上合成彩色图像。由于三个波段原色的选择是根据增强目的决定的,与原来波段的真实颜色不同,因此合成的彩色图像并不表示地物真实的颜色,这种合成称为假彩色合成。
最佳假彩色合成方案的原则是:合成后的图像应信息量最大而波段间的相关性最小。 8.试述彩色变换的原理,彩色变换的主要方法有哪些?
答:遥感数字图像处理系统中一是采用RGB色彩模型,是基于色光混合来再现颜色的,即图像中的每个像素是通过红(R)、绿(G)、蓝(B)三种色光按不同的比例组合来显示颜色的,由多光谱图像的三个波段组合的彩色图像实际上是显示在R、G、B空间中。二是采用IHS模型。亮度(intensity)、色度(hue)、饱和度(saturation)称为色彩的三要素,亮度(I)、色度(H)、饱和度(S)构成的HIS模型所表示的彩色与人眼看到的更为接近。RGB和HIS两种色彩模式可以相互转换,有些处理在某个彩色系统中可以更方便。以上所述即为彩色变换的原理。
把RGB系统变换为IHS系统称为HIS正变换,HIS系统变换为RGB系统称为HIS逆变换。彩色变换的主要方法有 1,球体变换 2,圆柱体变换。
9.什么是植被指数?常用的植被指数如何计算? 答:根据地物光谱反射率的差异作比值运算可以突出图像中植被的特征,提取植被类别或估算绿色生物量,通常把能够提取植被的算法称为植被指数(Vegetation Index,简称VI)。
常用的植被指数算法:
①比值植被指数(ratio vegetation index 即RVI) RVI=IR/R
IR 为遥感多波段图像中的近红外(infrared)波段的反射值; R 为红波段的反射值。
②归一化植被指数(normalized vegetation index 即NDVI) NDVI=(IR-R)/(IR+R)
③差值植被指数(difference vegetation index 即DVI) DVI=IR-R
④正交植被指数(perpendicular vegetation index 即PVI)
PVI=1.6225(IR)-2.2978(R)+11.0656 (NOAA 的 AVHRR卫星资料) PVI=0.939(IR)-0.344(R)+0.09 (Landsat卫星资料)
10.以陆地卫星TM图像和SPOT的全色波段图像为例,说明TM图像和SPOT图像融合的优越性。
答:不同传感器获取的同一地区的图像,由于其波长范围不同,几何特点不同,分辨率不同等因素而具有不同的应用特点。例如:Landsat的TM有7个波段,有丰富的光谱信息,其空间分辨率为28.5m(重采样后为30m),SPOT的全色波段(0.51~0.73μm)是一个单波段图像,但它的空间分辨率大大提高,可达到10m。将这两种图像融合,产生的具有10m分辨率的7个波段的新图像具有以上两种图像的优点,既提高了图像的分辨率,又保留了TM丰富的光谱信息。因此,图像融合的方法可以综合不同传感器图像的优点,大大提高图像的应用精度。
11.什么是多光谱空间?主成分变换的应用意义是什么?
5 / 8