江苏省如皋中学2020届高三数学下学期第一周综合自测试题
一、填空题
1. 已知集合,若,则实数a的值为______.
2. 若,则______.
3. 过点且与直线平行的直线方程为______.
4. 如图是一个算法流程图:若输入x的值为,则输出y的值是______ .
5. 已知向量,的夹角为,,,则______.
6. 函数的图象恒过定点P,P在幂函数的图象上,则______.
7. 等差数列,的前n项和分别为,,且,则______ .
8. 的内角A,B,C的对边分别为a,b,c,已知,,,则______.
9. 将函数的图象向左平移个单位长度,再向上平移1个单位长度,得到函数的图象,则函
数具有性质______填入所有正确性质的序号 最大值为,图象关于直线对称; 图象关于y轴对称; 最小正周期为; 图象关于点对称; 在上单调递减. 10. 已知,,则______.
11. 曲线在点处的切线方程为______.
12. 函数是R上的单调递减函数,则实数a的取值范围是______ .
13. 已知三棱锥
面SCB,,,三棱锥
的所有顶点都在球O的球面上,SC是球O的直径若平面
的体积为9,则球O的表面积为______.
平
14. 等差数列的前n项和为,,,则______.
二、解答题
15. 如图,在四棱锥中,,且,,,点E在PC上,且.
求证:平面平面PCD; 求证:直线平面BDE.
16. 设为锐角,且.
求的值; 求的值.
17. 某新建小区规划利用一块空地进行配套绿化.已知空地的
一边是直路AB,余下的外围是抛物线的一段弧,直路AB的中垂线恰是该抛物线的对称轴如图拟在这个空地上划出一个等腰梯形ABCD区域种植草坪,其中A,B,C,D均在该抛物线上.经测量,直路AB长为40米,抛物线的顶点P到直路AB的距离为40米.设点C到抛物线的对称轴的距离为m米,到直路AB的距离为n米. 求出n关于m的函数关系式;
当m为多大时,等腰梯形草坪ABCD的面积最大?并求出其最大值.
18. 如图,已知椭圆C:的离心率是,一个顶点是.
Ⅰ求椭圆C的方程;
Ⅱ设P,Q是椭圆C上异于点B的任意两点,且试问:直线PQ是否恒过一定点?若是,
求出该定点的坐标;若不是,说明理由.
19. 已知定义域为R的函数,是奇函数.
Ⅰ求a,b的值;
Ⅱ若对任意的,不等式恒成立,求k的取值范围.
20. 各项均为正数的数列中,前n项和.
求数列的通项公式;