⑻组合图形的思考方法
① 化整为零 ② 先补后去 ③ 正反结合
2. 立体图形
⑴规则立体图形的表面积和体积公式 ⑵不规则立体图形的表面积 整体观照法
⑶体积的等积变形
①水中浸放物体:V升水=V物 ②测啤酒瓶容积:V=V空气+V水 ⑷三视图与展开图
最短线路与展开图形状问题 ⑸染色问题
几面染色的块数与“芯”、棱长、顶点、面数的关系。
四、 典型应用题
1. 植树问题
①开放型与封闭型 ②间隔与株数的关系
2. 方阵问题
外层边长数-2=内层边长数
(外层边长数-1)×4=外周长数
外层边长数2-中空边长数2=实面积数
3. 列车过桥问题
①车长+桥长=速度×时间
②车长甲+车长乙=速度和×相遇时间 ③车长甲+车长乙=速度差×追及时间
列车与人或骑车人或另一列车上的司机的相遇及追及问题 车长=速度和×相遇时间 车长=速度差×追及时间
4. 年龄问题
差不变原理
5. 鸡兔同笼
假设法的解题思想
6. 牛吃草问题
原有草量=(牛吃速度-草长速度)×时间
7. 平均数问题 8. 盈亏问题
分析差量关系
9. 和差问题 10. 和倍问题 11. 差倍问题 12. 逆推问题
还原法,从结果入手
13. 代换问题
列表消元法
等价条件代换
五、 行程问题
1. 相遇问题
路程和=速度和×相遇时间
2. 追及问题
路程差=速度差×追及时间
3. 流水行船
顺水速度=船速+水速 逆水速度=船速-水速
船速=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2
4. 多次相遇
线型路程: 甲乙共行全程数=相遇次数×2-1 环型路程: 甲乙共行全程数=相遇次数
其中甲共行路程=单在单个全程所行路程×共行全程数
5. 环形跑道
6. 行程问题中正反比例关系的应用
路程一定,速度和时间成反比。 速度一定,路程和时间成正比。 时间一定,路程和速度成正比。
7. 钟面上的追及问题。
① 时针和分针成直线;
② 时针和分针成直角。
8. 结合分数、工程、和差问题的一些类型。
9. 行程问题时常运用“时光倒流”和“假定看成”的思考方法。
六、 计数问题
1. 加法原理:分类枚举 2. 乘法原理:排列组合 3. 容斥原理:
① 总数量=A+B+C-(AB+AC+BC)+ABC ② 常用:总数量=A+B-AB
4. 抽屉原理:
至多至少问题
5. 握手问题
在图形计数中应用广泛 ① 角、线段、三角形,
② 长方形、梯形、平行四边形 ③ 正方形
七、 分数问题
1. 量率对应 2. 以不变量为“1” 3. 利润问题 4. 浓度问题
倒三角原理 例:
5. 工程问题
① 合作问题
② 水池进出水问题
6. 按比例分配
八、 方程解题
1. 等量关系
① 相关联量的表示法
例: 甲 + 乙 =100 x 100-x ②解方程技巧 恒等变形
=3
3x x 甲÷乙