好文档 - 专业文书写作范文服务资料分享网站

周炳琨激光原理第二章习题解答

天下 分享 时间: 加入收藏 我要投稿 点赞

'?0

当F?f时,总满足?1,并在l?F时,最小。

?0

(2) l不变:

F2l2?f2 ?1?F?222l(F?l)?f

23.试由自再现变换的定义式(2.12.2)用q参数法来推导出自再现变换条件式()。 解:qc(lc?l)?q(0) (2.12.2)

2??0F()2F2?02???qc?i ?0 (2.10.18) 22????(F?l)2?(0)2(F?l)2?(0)2??2???0 即??令?0202F2?0(F?l)2?(??2)?20 得:1?F2(F?l)2?(??2)?20

??0221)] (2.12.3) 故F?l[1?(2?l

24.试证明在一般稳定腔(R1,R2,L)中,其高斯模在腔镜面处的两个等相位面的曲率半径分别等于各该镜面的曲率半径。

解:

?1T???2??R1

0?1L?1??2??????1??01????R2??2L?1?0?1L??R2?????1??01??24L2????????R1R1R2R2?2L2?2L?R2?24L4L2L?????1?R1R1R2R2?由(2.12.10),参考平面上的曲率半径为

4L2L4L?1?R2R2R?2B(D?A)???R1 2L14L4L??RRR1R1R2R11225.试从式(2.14.12)导出式(),并证明对双凸腔B?4C?0。 解:

2112?? (2.14.12a) R2l2?R2(l1?L)?2l2(l1?L) l1?Ll2R2?l2?R2(l1?L) (1)

R2?2(l1?L)112?? (2.14.12b) R1l1?R1(l2?L)?2l1(l2?L) (2) l2?Ll1R1将(1)代入(2)得:

R1l1?R1(R2(l1?L)R(l?L)?L)?2l1(21?L)

R2?2(l1?L)R2?2(l1?L)?l12?2L(L?R2)RL(L?R2)l1?1?0 (2.4.13)

2L?R1?R22L?R1?R2l12?Bl1?C?0

B?2L(L?R2)LR1(L?R2),C?

2L?R1?R22L?R1?R24L2(L?R2)24LR1(L?R2) B?4C??(2L?R1?R2)22L?R1?R22对于双凸腔R1??R1,R2??R2

B?4C?24L2(L?R2)2(2L?R1?R2)2?4LR1(L?R2)2L?R1?R2?0

26.试计算R1?1m,L?0.25m,a1?2.5cm,a2?1cm的虚共焦腔的?单程和?往返。若想保持a1不变并从凹面镜M1端单端输出,应如何选择a2?反之,若想保持a2不变并从凸

?单程和?往返各为多大?面镜M2端单端输出,应如何选择a1?在这两种单端输出的条件下,

题中a1为镜M1的横截面半径,R1为其曲率半径,a2、R2的意义类似。 解:对于虚共焦腔:R1?1m,L?0.25m。由R1?R2?2L得R2??0.5m,

m2?R1?2,m1?1。 R22?a2???a???1??0.16a1?2.5cm,a2?1cm,,?1?0.16;

m12?a1???a???2??1.5625, ?1?1。 2m2则?单程?1??1?2?0.6,?往返?1??1?2?0.84

(a) 保持a1不变,从凹面镜M1端单端输出,要求M2能接收从M1传输的光线,则须:

2?a1???a??2???0.25, ?1?1,a2?a1,此时?2?2m2 ?单程2?a2?a?1??1?2?1?2?0.5,?往返?1??1?2?1???a???0.75 a1?1?2(b) 保持a2不变,从凸面镜M2单端输出须:

?a2??1???a???0.25,

?1?2?单程?a2??a2?????1????1?,?1??1?2?1???0.512往返?a???0.75 ?a??1??1?2

周炳琨激光原理第二章习题解答

'?0当F?f时,总满足?1,并在l?F时,最小。?0(2)l不变:F2l2?f2?1?F?222l(F?l)?f23.试由自再现变换的定义式(2.12.2)用q参数法来推导出自再现变换条件式()。解:qc(lc?l)?q(0)(2.12.2)2??0F()2F2?02???qc
推荐度:
点击下载文档文档为doc格式
3qgu45xru31xep036fj71ujtp7zr5k019id
领取福利

微信扫码领取福利

微信扫码分享