2024-2024学年河南省新乡市辉县市九年级(上)期末数学试卷
一、选择题(每小题3分,共30分) 1.(3分)若A.
在实数范围内有意义,则x的取值范围是( )
B.x<2
C.
D.x≥0
2.(3分)方程x(x﹣4)+x﹣4=0的解是( ) A.4
B.﹣4
C.﹣1
D.4或﹣1
3.(3分)如图,将一个Rt△ABC形状的楔子从木桩的底端点P处沿水平方向打入木桩底下,使木桩向上运动,已知楔子斜面的倾斜角为20°,若楔子沿水平方向前移8cm(如箭头所示),则木桩上升了( )
A.8tan20°
B.
C.8sin20°
D.8cos20°
4.(3分)如图,△ABC中,D是AB的中点,DE∥BC,连接BE.若AE=6,DE=5,∠BEC=90°,则△BCE的周长是( )
A.12
B.24
C.36
D.48
5.(3分)抛物线y=x2+6x+7可由抛物线y=x2如何平移得到的( ) A.先向左平移3个单位,再向下平移2个单位 B.先向左平移6个单位,再向上平移7个单位 C.先向上平移2个单位,再向左平移3个单位 D.先向右平移3个单位,再向上平移2个单位
6.(3分)如图,以点O为位似中心,将△ABC放大得到△DEF.若AD=OA,则△ABC与△DEF的面积之比为( )
A.1:2
B.1:4
C.1:5
D.1:6
7.(3分)二次函数y=x2﹣ax+b的图象如图所示,对称轴为直线x=2,下列结论不正确的是( )
A.a=4
B.当b=﹣4时,顶点的坐标为(2,﹣8) C.当x=﹣1时,b>﹣5
D.当x>3时,y随x的增大而增大
8.(3分)如图所示,矩形纸片ABCD中,AD=6cm,把它分割成正方形纸片ABFE和矩形纸片EFCD后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB的长为( )
A.3.5cm
B.4cm
C.4.5cm
D.5cm
9.(3分)如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为( )
A.
B.2
C.
D.
10.(3分)如图,在Rt△ABC中,点D为AC边中点,动点P从点D出发,沿着D→A→B的路径以每秒1个单位长度的速度运动到B点,在此过程中线段CP的长度y随着运动时间x的函数关系如图2所示,则BC的长为( )
A.
B.
C.
D.
二、填空题(每小题3分,共15分) 11.(3分)计算
﹣6
的结果是 .
12.(3分)抛物线y=(k+1)x2+k2﹣9开口向下,且经过原点,则k= . 13.(3分)在一个不透明的袋子中有1个红球和3个白球,这些球除颜色外都相同,在袋子中再放入x个白球后,从袋子中随机摸出1个球,记录下颜色后放回袋子中并搅匀,经大量试验,发现摸到白球的频率稳定在0.95左右,则x= .
14.(3分)如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是 .
15.(3分)矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为 . 三、解答题(本大题共8个小题,满分75分)