好文档 - 专业文书写作范文服务资料分享网站

(完整版)小学数学典型应用题归纳汇总30种题型

天下 分享 时间: 加入收藏 我要投稿 点赞

【解题思路和方法】 可以利用“差倍问题”的解题思路和方法。

例1 爸爸今年35岁,亮亮今年5岁,今年爸爸的年龄是亮亮的几倍?明年呢? 解 35÷5=7(倍) (35+1)÷(5+1)=6(倍) 答:今年爸爸的年龄是亮亮的7倍, 明年爸爸的年龄是亮亮的6倍。 11 行船问题

【含义】 行船问题也就是与航行有关的问题。解答这类问题要弄清船速与水速,船速是船只本身航行的速度,也就是船只在静水中航行的速度;水速是水流的速度,船只顺水航行的速度是船速与水速之和;船只逆水航行的速度是船速与水速之差。 【数量关系】 (顺水速度+逆水速度)÷2=船速 (顺水速度-逆水速度)÷2=水速

顺水速=船速×2-逆水速=逆水速+水速×2 逆水速=船速×2-顺水速=顺水速-水速×2 【解题思路和方法】 大多数情况可以直接利用数量关系的公式。

例1 一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时?

解 由条件知,顺水速=船速+水速=320÷8,而水速为每小时15千米,所以,船速为每小时 320÷8-15=25(千米)

船的逆水速为 25-15=10(千米) 船逆水行这段路程的时间为 320÷10=32(小时)

答:这只船逆水行这段路程需用32小时。

12 列车问题

【含义】 这是与列车行驶有关的一些问题,解答时要注意列车车身的长度。 【数量关系】 火车过桥:过桥时间=(车长+桥长)÷车速 火车追及: 追及时间=(甲车长+乙车长+距离) ÷(甲车速-乙车速) 火车相遇: 相遇时间=(甲车长+乙车长+距离) ÷(甲车速+乙车速) 【解题思路和方法】 大多数情况可以直接利用数量关系的公式。

例1 一座大桥长2400米,一列火车以每分钟900米的速度通过大桥,从车头开上桥到车尾离开桥共需要3分钟。这列火车长多少米?

解 火车3分钟所行的路程,就是桥长与火车车身长度的和。 (1)火车3分钟行多少米? 900×3=2700(米) (2)这列火车长多少米? 2700-2400=300(米) 列成综合算式 900×3-2400=300(米) 答:这列火车长300米。 13 时钟问题

【含义】 就是研究钟面上时针与分针关系的问题,如两针重合、两针垂直、两针成一线、两针夹角为60度等。时钟问题可与追及问题相类比。 【数量关系】 分针的速度是时针的12倍, 二者的速度差为11/12。

通常按追及问题来对待,也可以按差倍问题来计算。 【解题思路和方法】 变通为“追及问题”后可以直接利用公式。

例1 从时针指向4点开始,再经过多少分钟时针正好与分针重合?

解 钟面的一周分为60格,分针每分钟走一格,每小时走60格;时针每小时走5格,每分钟走5/60=1/12格。每分钟分针比时针多走(1-1/12)=11/12格。4点整,时针在前,分针在后,两针相距20格。所以

分针追上时针的时间为 20÷(1-1/12)≈ 22(分)

答:再经过22分钟时针正好与分针重合。 14 盈亏问题

【含义】 根据一定的人数,分配一定的物品,在两次分配中,一次有余(盈),一次不足(亏),或两次都有余,或两次都不足,求人数或物品数,这类应用题叫做盈亏问题。 【数量关系】 一般地说,在两次分配中,如果一次盈,一次亏,则有: 参加分配总人数=(盈+亏)÷分配差 如果两次都盈或都亏,则有:

参加分配总人数=(大盈-小盈)÷分配差 参加分配总人数=(大亏-小亏)÷分配差

【解题思路和方法】 大多数情况可以直接利用数量关系的公式。

例1 给幼儿园小朋友分苹果,若每人分3个就余11个;若每人分4个就少1个。问有多少小朋友?有多少个苹果?

解 按照“参加分配的总人数=(盈+亏)÷分配差”的数量关系: (1)有小朋友多少人? (11+1)÷(4-3)=12(人) (2)有多少个苹果? 3×12+11=47(个)

答:有小朋友12人,有47个苹果。 15 工程问题

【含义】 工程问题主要研究工作量、工作效率和工作时间三者之间的关系。这类问题在已知条件中,常常不给出工作量的具体数量,只提出“一项工程”、“一块土地”、“一条水渠”、“一件工作”等,在解题时,常常用单位“1”表示工作总量。

【数量关系】 解答工程问题的关键是把工作总量看作“1”,这样,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式。 工作量=工作效率×工作时间 工作时间=工作量÷工作效率

工作时间=总工作量÷(甲工作效率+乙工作效率) 【解题思路和方法】 变通后可以利用上述数量关系的公式。

例1 一项工程,甲队单独做需要10天完成,乙队单独做需要15天完成,现在两队合作,需要几天完成?

解 题中的“一项工程”是工作总量,由于没有给出这项工程的具体数量,因此,把此项工程看作单位“1”。由于甲队独做需10天完成,那么每天完成这项工程的1/10;乙队单独做需15天完成,每天完成这项工程的1/15;两队合做,每天可以完成这项工程的(1/10+1/15)。

由此可以列出算式: 1÷(1/10+1/15)=1÷1/6=6(天) 答:两队合做需要6天完成。 16 正反比例问题

【含义】 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定(即商一定),那么这两种量就叫做成正比例的量,它们的关系叫做正比例关系。正比例应用题是正比例意义和解比例等知识的综合运用。

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。反比例应用题是反比例的意义和解比例等知识的综合运用。

【数量关系】 判断正比例或反比例关系是解这类应用题的关键。许多典型应用题都可以转化为正反比例问题去解决,而且比较简捷。

【解题思路和方法】 解决这类问题的重要方法是:把分率(倍数)转化为比,应用比和比例的性质去解应用题。

正反比例问题与前面讲过的倍比问题基本类似。

例1 修一条公路,已修的是未修的1/3,再修300米后,已修的变成未修的1/2,求这条公路总长是多少米? 解 由条件知,公路总长不变。

原已修长度∶总长度=1∶(1+3)=1∶4=3∶12 现已修长度∶总长度=1∶(1+2)=1∶3=4∶12

比较以上两式可知,把总长度当作12份,则300米相当于(4-3)份,从而知公路总长为 300÷(4-3)×12=3600(米)

答: 这条公路总长3600米。 17 按比例分配问题

【含义】 所谓按比例分配,就是把一个数按照一定的比分成若干份。这类题的已知条件一般有两种形式:一是用比或连比的形式反映各部分占总数量的份数,另一种是直接给出份数。

【数量关系】 从条件看,已知总量和几个部分量的比;从问题看,求几个部分量各是多少。 总份数=比的前后项之和

(完整版)小学数学典型应用题归纳汇总30种题型

【解题思路和方法】可以利用“差倍问题”的解题思路和方法。例1爸爸今年35岁,亮亮今年5岁,今年爸爸的年龄是亮亮的几倍?明年呢?解35÷5=7(倍)(35+1)÷(5+1)=6(倍)答:今年爸爸的年龄是亮亮的7倍,明年爸爸的年龄是亮亮的6倍。11
推荐度:
点击下载文档文档为doc格式
3p4cv3cfkl797950lpza3sk4u09qm100fhh
领取福利

微信扫码领取福利

微信扫码分享