流中颗粒相的体积分数不能太高,通常情况下这一体积分数要小于10%~20%。但是,这并不意味着在应用DPM 模型时颗粒相的质量分数也要小于10%~20%,实际上,我们可以使用DPM 模型来模拟离散相质量分数等于或超过连续相质量分数的流动。
**【(1)如果颗粒是以喷射的形式进入连续相的,而且流场中有明确的入口和出口,这种情况下可以使用稳态的DPM 模型来计算;
(2)如果颗粒相在连续相中处于一种无限期的悬浮状态,这种情况下稳态的Lagrangian 模型就不再适用了,对于这样的工况可以考虑使用非稳态的DPM 模型来进行求解。换句话说,对于搅拌器、混和器、流化床这一类容器如果应用DPM 模型来模拟其流场,应该在非稳态的前提下进行。】
一旦应用DPM 模型来对流动进行模拟后,Fluent 中的某些功能将不能再被使用。具体如下: 1. 周期性的边界条件; 2. 可调的时间步长;
3. 使用非预混燃烧模型时,颗粒不能参加反应;
4. 当使用动网格或变形网格时,颗粒喷射的表面便不能随网格一起运动; 5. 如果使用了复合参考系,在参考系下颗粒轨道失去了原有的意义,同理,相间耦合计算也失去了意义。解决这个问题的方法就是采用绝对速度来对颗粒进行跟踪而不是采用相对速度,这一方法可以通过在文本窗口输入以下命令实现: define/models/dpm/tracking/track-inabsolute-frame。需要注意的是,计算结果会与符合参考系下壁面的位置有很大关系。颗粒的跟踪是在哪个参考坐标系下进行的,颗粒的入射速度就要在哪个参考坐标系下定义的。默认情况下,颗粒速度是基于当地坐标系定义的,如果你激活了track-in-absolute-frame(方法如前所述),颗粒速度就基于绝对坐标系来定义。
3.DPM 模型的傻瓜用法
所谓的傻瓜用法,就是不用考虑细节,甚至不必知道模型设置面板中每一 项的意义所在,而只给出相应参数的设定来进行求解。我们不提倡这样的做法,但这也确实是能让新手尽快上路的好办法,当然,有可能计算的结果不准确,但对于简单的流场来讲,应该还可以接受,对于稍复杂的情况,即便是老手,也不敢保证一次建模、一次计算就能得到满意的结果,所以,慢慢调试吧!对于稳态的工况,为了确保计算结果的收敛,可以暂时先不在流场中添加离散相,而仅仅进行连续相的迭代,一直迭代到连续相收敛再加入离散相。当然,也可在计算得
精选
到收敛趋势时加入离散相。本节只讨论DPM 模型面板的设定。 下面说明傻瓜用法的操作步骤:
1. 通过Define→Models→Discrete Phase 来打开DPM 模型的控制面板, 2. 选中interaction with Continuous Phase;
3. 将Number of Continuous Phase Iterations per DPM Iteration 置为20; 4. 选中Specify Length Scale,将Length Scale 置为0.01,注意Length Scale 后面的单位是m;
5. 粗略估计颗粒的行程,然后用该行程除以Length Scale,得到的值就是Max. Number Of Steps 要输入的值。(实际上,Length Scale 与Max.Number Of Steps 的乘积即为跟踪颗粒轨迹的最大长度,如果你想观察颗粒在整个流场中的流动,那么这个乘积的值就要大于颗粒的轨迹长度,所以此时可以适当地扩大Max. Number Of Steps 的值。)
6. 点击面板下方的injections,弹出Injections 面板,再点击Create,弹出Set Injection Properties 面板,在此面板中设定颗粒的属性。 7. 在Point Properties 下输入颗粒的各种参数;
8. 在Turbulent Dispersion 下激活Stochastic Tracking 选项,将Number of Tries 改成10。
至此,DPM 模型的基本设定就全部结束了。接下来的任务就是针对自己 模型的特点,有针对性的到帮助文件中去寻找解决问题的方法。
_______________________________
我们先看看燃烧中的组分输运和有反应流动该如何处理。这是燃烧问题中很重要的一部分,前人发展了很多模型来处理不同的具体问题: a) 通用有限速度模型
该方法基于组分质量分数的输运方程,采用你所定义的化学反应机制,对化学反应进行模拟。反应速度在这种方法中是以源项的形式出现在组分输运方程中的,计算反应速度有几种方法:从Arrhenius 速度表达式计算,从Magnussen 和Hjertager 的漩涡耗散模型计算或者从EDC 模型计算。 b) 非预混燃烧模型
在这种方法中,并不是解每一个组分输运方程,而是解一个或两个守恒标量(混和分数)的输运方程,然后从预测的混合分数分布推导出每一个组分的浓度。该方法主要用于模拟湍流扩散火焰。在守恒标量方法中,通过概率密度函数或者PDF 来考虑湍流的影响。
精选
c) 预混和燃烧模型
这一方法主要用于完全预混合的燃烧系统。在这些问题中,完全的混合反应物和燃烧产物被火焰前缘分开。我们解出反应发展变量来预测前缘的位置。湍流的影响是通过考虑湍流火焰速度来计算得出的。 d) 部分预混和燃烧模型
顾名思义,部分预混和燃烧模型就是用于描述非预混和燃烧和完全预混和燃烧结合的系统。在这种方法中,我们解出混合分数方程和反应发展变量来分别确定组分浓度和火焰前缘位置。 模型选取的大致方针如下:
(1)通用有限速度模型主要用于:化学组分混合、输运和反应的问题;壁面或者
粒子表面反应的问题(如化学蒸汽沉积)。
(2) 非预混燃烧模型主要用于:包括湍流扩散火焰的反应系统,这个系统接近化
学平衡,其中的氧化物和燃料以两个或者三个流道分别流入所要计算的区域。
(3) 预混燃烧模型主要用于单一、完全预混和反应物流动。
(4) 部分预混燃烧模型主要用于:区域内具有变化等值比率的预混和火焰的情况。
由于在非预混燃烧中,燃料和氧化剂以相异流进入反应区;在预混燃烧系统 中,反应物在燃烧以前以分子水平混合,结合上述方针,对四角切圆煤粉锅炉 炉内燃烧过程我们应该选择非预混燃烧模型。
_____________________________________
我做的问题是蒸汽中水滴的汽化问题,用的是DPM 模型,但是在injection 面板里颗粒类型只有惯性颗粒,而液滴和燃料颗粒不可选,我想用液滴类型,费了很大力气,翻箱倒柜找资料:只有传热选项被激活并且至少两种化学组分在计算中是被激活的,或者已经选择了非预混燃烧或部分预混燃烧模型,液滴类型才可选。然而我的问题是一种化学组分的两个状态,也不是燃料颗粒。 答案:
打开model->species ; 选择 species transport ; 下面的reactions不要选 ;
然后选择一个包含H2O的mixture material; 默认的mixture-template就可以;
然后在DPM属性设置中的particle type选择Droplet; 在Material中选water-liquid;
精选
在Evaporating Species 中选H2O;
__________________________________________
(1)请问DPM 模型的使用前提条件是什么?使用中有什么限制?
答案:颗粒相体积分数占气相体积分数小于10%。此时可将颗粒相视为离散相,可用DPM,否则可视为连续相(拟流体),采用两相流模型(Mixing Model、Euler Model)
(2)那么颗粒相可以是液体吗?
答案:可以是液滴,你可以假设液滴为球形的,这样就可以了 还可以做一些其他假设。
(3)在DPM 模型中,在离散相的设定中采用surface,颗粒分布rosin 分布,计算为稳态,计算完成后,在相同条件下利用partical tracking 得出的分离效率均不 同,又是差别还比较大。请问是不是用这种方法不能得出分离效率,或者fluent 这种计算随机性较大呢?
答案:将射流源里面的number of tries 的值增大,发现这样可以看到湍流对于离散相的影响,你每点一次显示的值不一样,也是因为湍流的影响,多次的点击就相当于将上面的值增大,不过是将多次的计算结果都显示在一个窗口上, (4)当我将计算模型从segregated 转换成coupled 的时候,在运行DPM 计算模型时,出现如下错误:
Error: couldn't allocate fine level coefficient matrix Error Object: ()
请问如何消除?如果换回segregated,问题又没有了,我想是不是使用coupled(solver)的时候另有设置? 答案:
我的理解,既然选定的解算器,就已经决定了求解的方式:是分别求出各变量(segregate),还是所有方程联立共同求出各变量(coupled)。但你从segregate 变为coupled 时,是否考虑了有时,这两个是不可以相互交换的?比如用 segregate 时,可以不考虑能量方程,而从连续方程和动量方程求解出压力速度 场,然后再求解出温度场,这样这几个参数不是相互依赖的关系。而用coupled 是,方程是耦合的,必须同时求解。我想,大概出现问题的原因在这里。 (5)使用segregated 时可以不考虑能量方程,那是不是也可以考虑,还有在solver 中选定energy 一项,是不是就算考虑了能量方程?
答案:这里说的是求解过程中,比如温度变化不大时,粘度可以认为是常数,这
精选
样流体运动不受温度场的影响,流场可以独立于温度场求解,这时,可以先从连续方程和动量方程中求解出速度和压力来,然后带入能量方程中求出温度来。并 不是说不考虑能量方程,只是它们间的相互作用可以不考虑。也就是说将运动 和传热问题分开来分析了。所以叫segregated,而coupled,是由于几个因素相 互影响不能忽略,比如粘度时温度和函数。等等,必须同时考虑,所以在求解 时,要同时解出来,不分先后。所以叫耦合。
(6)在DPM(discrete phase model)中,有分散相(particle)位置定义,即first position 和last position,请问各位这两项分别代表什么,要是需要定义多个particle 的位置,该怎么操作? 答案:
first position 是你选group 时第一个喷口的位置,last 嘛就是最后那个了 你想定义多个的话,就多产生几个injection 好了啊
(7)我用DPM 模型模拟粉尘在湍流中的扩散,现有关于离散相参数设置的问题不明,就是在设置两相耦合设置的时候,Number Of Continuous Phase Iterations Per DPM Iteration 也就是迭代计算的时间间隔数应该设多少?如果太大是不是 耦合的不好,而太小对连续相影响太大,引起波动不容易收敛。
答案:Number Of Continuous Phase Iterations Per DPM Iteration 我通常设为20 次 (8)我用颗粒云模型计算出来的结果跟用随机轨道模型的结果不同啊,颗粒云 中的最小颗粒群半径应该是0 吧,那么设置不同的最大颗粒群半径结果也有很 大差异,现在关键是颗粒云模型的最小以及最大颗粒群半径应该设多少,这个数如果大于某个数值结果就都一样了,如果较小对结果影响就很大
答案:用颗粒云模型计算出来的结果跟用随机轨道模型的结果不同。这很正常啊,因为两者的模拟方式不同,怎可能期待会有相同的結果?设置不同的最大颗粒群半径结果也有很大差异,這也是很合理的!顆粒的大小本来就会影响流场的性质。 我发现耦合的时间间隔对结果的影响不是很大,那么设10,20 也都差不多。关键是颗粒云模型的最小以及最大颗粒群半径应该设多少?顆粒半径的大小, 应该取决于要模拟的物体其半径有多大(可以估计)。
_________________________________________________ 壁面热边界条件中的所有参数结合不同的壁面种类进行说明:
一、主要壁面边界参数的说明
1、壁面厚度(Wall Thickness):指定流场中Wall 的厚度,默认值0,作为0 厚度的Wall 来处理。当给定厚度的时候,因为壁本身有一定的面积,它和厚度的乘
精选