核电站工作原理
中国核电网 | 发表于:2014-04-12 | 来源:原创
核电站工作原理
核电站(nuclear power plant)是利用核裂变(Nuclear Fission)或核聚变(Nuclear Fusion)反应所释放的的能量产生电能的发电厂。目前商业运转中的核能发电厂都是利用核裂变反应而发电。核电站一般分为两部分:利用原子核裂变生产蒸汽的核岛(包括反应堆装置和一回路系统)和利用蒸汽发电的常规岛(包括汽轮发电机系统),使用的燃料一般是放射性重金属:铀、钚。
1“铀”发裂变
如果除去核反应堆,核电站和火电站除了生成蒸汽的热源不同外,差异很少。 而建造一个核反应堆需要一种特别的铀。 铀是地球上一种相当普通的元素,在地球形成时就存在于这个行星中了。而最有价值的,是铀-235。
虽然,铀-235占据了所有铀存量中的0.7%,但它有一个奇特的特性,那就是:它是少数能够诱发裂变的物质之一。它既可以用于核能发电,也可以用于制造核弹。
除了铀-235之外,核电站的另一种燃料就是:钚-239。钚-239可以使用中子轰击铀-238而得到———这是核反应堆中时时刻刻发生着的事。
铀-235原子捕捉一个正在穿过的中子的概率非常高。
在正常工作的核反应堆中(称为临界状态),每次裂变释放出的中子都会导致另一次裂变的发生。而,铀-235原子捕捉中子并发生分解的过程非常迅速,单位以皮秒计算(1皮秒=一万亿分之一秒)。
当单个原子分解时,会有巨大的能量通过热和伽马辐射的形式释放出来。
所有核电站反应堆的基本原理都是利用核裂变反应,对水进行加热并将其转化为蒸汽。再用蒸汽推动蒸汽轮机,而蒸汽轮机则带动发电机来发电。
2密闭结构里的反应
通常,铀被制作成直径相当于一枚硬币大小、长度为2.5厘米左右的燃料元件。燃料元件被安装到长燃料棒中,燃料棒又被组装成燃料组件。
燃料组件通常被浸泡在压力容器中,容器中的水起冷却作用。
为使反应堆工作,浸泡在水中的燃料组件必须处于稍微超临界的状态。这意味着,如果没有其他设备,铀最终将会过热并熔化。
为防止这种情况出现,由吸收中子的材料制成的控制棒通过升降装置插入到燃料组件中,操作员通过升降控制棒来控制核反应的程度。
当操作员希望铀堆芯产生更多的热量时,可将控制棒从铀燃料组件中升起。要使热量减少,则降低控制棒以插入到铀燃料组件中。在发生事故或者更换燃料时,控制棒还能被完全插入铀燃料组件中以关闭核反应堆。
铀燃料组件是一个能够产生极高能量的热源,它加热水并将其转化为蒸汽。蒸汽推动蒸汽轮机,而汽轮机则带动发电机来发电。
在某些反应堆中,反应堆产生的蒸汽通过二级中介热交换装置,将另一个回路的水加热为蒸汽来转动汽轮机。这种设计的好处是:放射性的水或者水蒸气不会接触到汽轮机。
同样,在某些反应堆中,与反应堆堆芯接触的冷却流体是气体(如二氧化碳)或者液态金属(如钠或钾),这种类型的反应堆允许堆芯在更高的温度下工作。 反应堆的压力容器通常被放置在一个用作辐射防护的混凝土衬里内。
这个衬里被安装在一个更大的钢制密闭容器中,这个容器中有反应堆堆芯以及供工作人员维护反应堆的硬件设施(吊车等),容器的作用是防止放射性气体或液体泄漏。
最后,这个密闭容器被外部的混凝土建筑保护,它的强度能够承受喷气式飞机的撞击。这些二级密闭结构对防范如在三里岛事故中那样的辐射或放射性蒸汽的泄漏是必要的。
前苏联的核电站中由于没有二级密闭结构,最终导致了切尔诺贝利核电站事故。 中国核电站分布
中国大陆现有的核电站
当今的技术
现今正在运营的核反应堆可依裂变的方式区分为两大类,各类中又可依控制裂变的手段区分为数个子类别:
核裂变反应堆通过受控制的核裂变来获取核能,所获核能以热量为形式从核燃料中释出。现行核电站所用的全为核裂变反应堆,这也是本段的主述内容。核裂变反应堆的输出功率为可调。核裂变反应堆也可依世代分类,比如说第一、第二和第三代核反应堆。现在的标
准核反应堆都为压水式核反应堆(PWR)。
快中子式核反应堆和热中子式核反应堆的区别会在稍后讲到。总体来说,快中子式反应堆产生的核废料较少,其核废料的半衰期也大大短于其它型式反应堆所产生的核废料,但这种反应堆很难建造,运营成本也高。快中子式反应堆也可以当作增殖型核反应堆,而热中子式核反应堆一般不能为此。
A. 压水反应堆(PWR)
这种反应堆完全以高压水来冷却并使中子减速(即使在温度极高时也是这样)。大部分正在运行的反应堆都属于这一类。尽管在三哩岛出事的反应堆就是这一种,一般仍认为这类反应堆最为安全可靠。这是一种热中子式核反应堆。中国大陆秦山核电站一期工程、大亚湾核电站和台湾核三厂的反应堆为此型。
B. 沸水反应堆(BWR)
这些反应堆也以轻水作为冷却剂和减速剂,但水压较前一种稍低。正因如此,在这种反应堆内部,水是可以沸腾的,所以这种反应堆的热效率较高,结构也更简单,而且可能更安全。其缺点为,沸水会升高水压,因此这些带有放射性的水可能突然泄漏出来。这种反应堆也占了现在运行的反应堆的一大部分。这是一种热中子式核反应堆。台湾核一厂和核二厂两座发电厂的反应堆为此型。
C. 压重水式核反应堆(PHWR)
这是由加拿大设计出来的一种反应堆,(也叫做CANDU),这种反应堆使用高压重水来进行冷却和减速。这种反应堆的核燃料不是装在单一压力舱中,而是装在几百个压力管道中。这种反应堆使用天然铀为核燃料,是一种热中子式核反应堆。这种反应堆可以在输出功率开到最大时添加核燃料,因此能高效利用核燃料(因为可作精确控制),并节省浓缩铀的成本;只是重水很贵。大部分压重水式反应堆都位于加拿大,有一些出售到阿根廷、中国、印度(未加入防止核武器扩散条约)、巴基斯坦(未加入防止核武器扩散条约)、罗马尼亚和南韩。印度也在它的第一次核试爆后运行了一些压重水式核反应堆(一般被称为“CANDU的变种”)。中国大陆秦山核电站三期工程的反应堆为此型。
D.石墨轻水型核反应堆(RBMK)
这是一种苏联的设计,它在输出电力的同时还产生钚。这种反应堆用水来冷却并用石墨来减速。RBMK型与压重水型在某些方面具有相同之处,即可以在运行中补充核燃料,并且使用的都是压力管。但是与压重水型不同的是,这种反应堆不稳定,并且体积太大,无法装置在外罩安全壳的建筑物里,这点很危险。RBMK型还有一些很重大的安全缺陷,尽管其中一些在切尔诺贝利核事故后被改正了。一般认为RBMK型是最危险的核反应堆型号之一。切尔诺贝利核电站拥有四台RBMK型反应堆。
E.气冷式反应堆(GCR)和高级气冷式反应堆(AGCR)
这种反应堆使用石墨作为减速剂,并用二氧化碳作为冷却剂。其工作温度较压水式反应堆更高,因此热效率也更高。一部分正在运行的反应堆属于这一类,大部分位于英国。老式的核电站(也就是Magnox式)已经或即将关闭。但高级气冷式核反应堆还会继续运行10至20年。这是一种热中子式核反应堆。关闭这种核电站的费用很高,因其反应炉核心很大。
F. 液态金属式快速增殖核反应堆(LMFBR)
这种反应堆使用液态金属作为冷却剂,而完全不用减速剂,并且在发电的同时生产出比消耗量更多的核燃料。这种反应堆在效率上很接近压水式反应堆,而且工作压力不需太高,因为液态金属即使在极高温下也不需加压。法国的超级凤凰核电站和美国的费米-I核电站用的都是这种反应堆。1995年,日本的“文殊”实验反应炉发生液态钠泄漏,预计将会在2008年重新开始运行。这三个核电站都用到了液态钠。这是一种快速中子式反应堆而不是热中子式反应堆。液态金属式反应堆分为两种:
液态铅式反应堆
这种反应堆使用液态铅来作为冷却剂,铅不但是隔绝辐射的绝佳材料,还能承受很高的工作温度。还有,铅几乎不吸收中子,所以在冷却过程中损失的中子较少,冷却剂也不会变成带放射性。与钠不同的是,铅是惰性元素,所以发生事故的机率也较小,但是,应用如此大量的铅就不得不考虑毒性问题,而且清理起来也很麻烦。这种反应堆经常用的是铅铋共熔合金。在这种情况下,铋会产生一些小的放射性问题,因为它会吸收少量中子,而且也比铅更容易变得带放射性。
液态钠式反应堆
大部分液态金属式反应堆都属于这一种。钠很容易获得,而且还能防止腐蚀。但是,钠遇水即剧烈爆炸,所以使用时一定要小心。虽然这样,处理钠爆炸并不比处理压水式核反应堆中超高温轻水的泄漏麻烦到哪里去。
放射性同位素温差发电机
通过被动的衰变来获取热量。一些放射性同位素温差发电机被用来驱动太空探测器(比如卡西尼-惠更斯号),苏联的一些偏远地区灯塔,和某些心脏起搏器。这种发电机产生的热会随着时间逐渐减少,其热能通过热电效应转换成电能。
工作原理
一般核电站的关键部分是: 核燃料 反应炉燃料棒 中子减速剂 冷却剂 控制棒 反应炉压力槽
反应炉中心紧急冷却系统 反应堆保护系统
蒸汽发生器(沸水式反应堆中没有这个) 安全壳建筑 · 水泵 · 涡轮机 · 发电机
· 冷凝器
一般的热电厂都有燃料供应来产生热,比如说天然气、煤或石油。对于核电厂来说,它需要的热来自于核反应堆中的核裂变。当一个相当大的可裂变原子核(一般为铀-235或钚-239)被一个中子轰击时,它便分裂为两个或更多个部分,同时释放出能量和中子,这个过程就叫做核裂变。原子核释放出的中子会继续轰击其它原子核。当这个链式反应被控制的时候,它释放出的能量便可用来烧水,产生出的水蒸气会驱动涡轮机,从而产生电能。需要记住的是,核爆炸中发生的是“不受控制的”链式反应,而核反应堆中的裂变速度无法达到核爆炸所需要的速度,这是因为商业用核燃料的浓度还不够高。(参看浓缩铀)
链式反应被一些能够吸收或减慢中子的材料控制着。在以铀为核燃料的反应堆当中,中子需要被减慢速度,因为当慢速中子轰击铀-235原子核时是更容易发生裂变的。轻水反应堆使用普通水来减慢中子并进行冷却。当水的温度升高到一定程度时,它便达到了工作温度,此时它的密度会降低,因此没被它吸收的少量中子会被减得足够慢,然后去引发新的裂变。负反馈将裂变速度保持在一定水平。
1. 什么是核电站
核电站就是利用一座或若干座动力反应堆所产生的热能来发电或发电兼供热的动力设施。反应堆是核电 站的关键设备,链式裂变反应就在其中进行。目前世界上核电站常用的反应堆有压水堆、沸水堆、重水堆和改进型气冷堆以及快堆等。 但用的最广泛的是压水反应堆。压水反应堆是以普通水作冷却剂和慢化剂,它是从军用堆基础上发展起来的最成熟、最成功的动力堆堆 型。
2. 核电站工作原理
核电厂用的燃料是铀。用铀制成的核燃料在“反应堆”的设备内发生裂变而产生大量热能,再用处于高 压力下的水把热能带出,在蒸汽发生器内产生蒸汽,蒸汽推动汽轮机带着发电机一起旋转,电就源源不断地产生出来,并通过电网送到 四面八方。
3. 压水堆核电站
以压水堆为热源的核电站。它主要由核岛和常规岛组成。压水堆核电站核岛中的四大部件是蒸汽发生器 、稳压器、主泵和堆芯。在核岛中的系统设备主要有压水堆本体,一回路系统,以及为支持一回路系统正常运行和保证反应堆安全而设 置的辅助系统。常规岛主要包括汽轮机组及二回等系统,其形式与常规火电厂类似。
4. 沸水堆核电站
以沸水堆为热源的核电站。沸水堆是以沸腾轻水>为慢化剂和冷却剂并在反应堆压力容器内直接产生 饱和蒸汽的动力堆。沸水堆与压水堆同属轻水堆,都具有结构紧凑、安全可靠、建造费用低和负荷跟随能力强等优点。它们都需使用低 富集铀作燃料。
沸水堆核电站系统有:主系统(包括反应堆);蒸汽->给水系统;反应堆辅助系统等。
5. 重水堆核电站
以重水堆为热源的核电站。重水堆是以重水作慢化剂的反应堆,可以直接利用天然铀作为核燃料。重水 堆可用轻水或重水作冷却剂,重水堆分压力容器式和压力管式两类。
重水堆核电站是发展较早的核电站,有各种类别,但已实现工业规模推广的只有加拿大发展起来的坎杜 型压力管式重水堆核电站。
6. 快堆核电站
由快中子引起链式裂变反应所释放出>来的热能转换为电能的核电站。快堆在运行中既消耗裂变材料 ,又生产新裂变材料,而且所产可多于所耗,能实现核裂变材料的增殖。
目前,世界上已商业运行的核电站堆型,如压水堆、沸水堆、重水堆、石墨气冷堆等都是非增殖堆型, 主要利用核裂变燃料,即使再利用转换出来的钚-239>等易裂变材料,它对铀资源的利用率也只有1>%—2>%,但在快堆中 ,铀-238>原则上都能转换成钚-239>而得以使用,但考虑到各种损耗,快堆可将铀资源的利用率提高到60>%—70>%。
7. 世界上目前建造核电站情况
核电自50>年代中期问世以来,目前已取得长足的发展。到1999>年中期,世界上共有436>座 发电用核反应堆在运行,总装机容量为350676>兆瓦。正在建造的发电反应堆有30>座,总装机容量为21642>兆瓦。
目前世界上有33>个国家和地区有核电厂发电,核发电量占世界总发电量的17>%,其中有十几 国国家和地区核电发电量超过各种的总发电量的四分之一,有的国家超过70>%。据资料估计,到2005>年核电厂装机容量将达到 388567>兆瓦。
根据世界核能协会2012年8月的数据,全世界31个国家有435座工作反应堆