SPSS应用软件试验指导手册
? 计算结果 单击上图中“OK”按钮,输出结果如下图所示。 (1)Group Statistics(分组统计量)表
分别给出不同总体下的样本容量、均值、标准差和平均标准误。从该表中可以看出,参加工会的妇女平均报酬为19.925,不参加工会的妇女平均报酬为20.1429。
表3.6 分组统计量 Group Statistics
报酬
会员 1.00 2.00 N 8 7 Mean 19.9250 20.1429 Std. Deviation .46522 .52236 Std. Error Mean .16448 .19743 (2)Independent Sample Test (独立样本T 检验)表
Levene’s Test for Equality of Variance,为方差检验,在Equal variances assumed (原假设:方差相等)下,F=0.623, 因为其P-值大于显著性水平,即:Sig.=0.444>0.05, 说明不能拒绝方差相等的原假设,接受两个总体方差是相等的假设。
T-test for Equality of Means 为检验总体均值是否相等的t 检验,由于在本例中,其P-值大于显著性水平,即:Sig.=0.408>0.05, 因此不应该拒绝原假设,也就是说参加工会的妇女跟未参加工会的妇女的报酬没有显著差异。本次抽样推断结论不支持The Wall Street Journal(1994,7 )提出的“参加工会的妇女比未参加工会的妇女的报酬要多2.5 美元”观点,即参加工会的妇女不比未参加工会的妇女的报酬多。
表3.7 独立样本T检验结果 Independent Samples Test
Levene's Test for Equality of Variances F 报酬 -.855 13 -.848 12.187 Sig. t df t-test for Equality of Means Std. Error Difference .25485 .25697 95% Confidence Interval of the Difference Lower -.76842 -.77679 Upper .33271 .34108 Sig. Mean (2-tailed) Difference .408 .413 -.21786 -.21786 Equal variances .623 .444 assumed Equal variances not assumed 5.配对样本T检验
36
SPSS应用软件试验指导手册
配对样本是对应独立样本而言的,配对样本是指一个样本在不同时间做了两次试验,或者具有两个类似的记录,从而比较其差异;独立样本检验是指不同样本平均数的比较,而配对样本检验往往是对相同样本二次平均数的检验。
配对样本T检验的前提条件为:第一,两样本必须是配对的。即两样本的观察值数目相同,两样本的观察值顺序不随意更改。第二,样本来自的两个总体必须服从正态分布。例如针对试验前学习成绩何智商相同的两组学生,分别进行不同教学方法的训练,进行一段时间试验教学后,比较参与试验的两组学生的学习成绩是否存在显著性差异。
假设某校为了检验进行新式培训前后学生的学习成绩是否有了显著提高,从全校学生中随机抽出30名进行测试,这些学生培训前后的考试成绩放置于数据文件“学生培训.sav”中。在SPSS中对这30名学生的成绩进行配对样本t检验的操作步骤如下:
? 选择菜单【分析】→【比较均值】→【配对样本T检验】,打开对话框,如图3.8所示,将两个配对变量移入右边的Pair Variables列表框中。移动的方法是先选择其中的一个配对变量,再选择第二个配对变量,接着单击中间的箭头按钮。
图3.8 Paired-Samples T Test对话框
? 选项按钮的用于设置置信度选项,这里保持系统默认的95% ? 在主对话框中单击ok按钮,执行操作。 ? 实例结果分析
表3.8和表3.9给出了培训前后学生考试成绩的均值、标准差、均值标准误差以及培训前后成绩的相关系数。从表3.8来看,培训前后平均成绩并没有发生显著的提高。
37
SPSS应用软件试验指导手册
表3.10给出了配对样本t检验结果,包括配对变量差值的均值、标准差、均值标准误差以及差值的95%置信度下的区间估计。当然也给出了最为重要的t统计量和p值。结果显示p=0.246>0.05,所以,学校的所谓新式培训并未带来学生成绩的显著变化。
表3.8 培训前后成绩的描述统计量 Paired Samples Statistics
Pair 1
表3.9 培训前后成绩的相关系数 Paired Samples Correlations
Pair 1
表3.10 配对样本T检验结果 Paired Samples Test Paired Differences 95% Confidence Std. Std. Error Interval of the Deviation Mean Difference 7.398 1.351 t df Sig. (2-tailed) N 培训前&培训后 30 Correlation .865 Sig. .000 Mean 67.00 68.60 N 30 30 Std. Deviation 14.734 12.947 Std. Error Mean 2.690 2.364 培训前 培训后 Pair 1 Mean -1.600 29 .246 培训前-培训后 Lower Upper -4.362 1.162 -1.185 四、备择试验
1.某省大学生四级英语测验平均成绩为65,现从某高校随机抽取20份试卷,其分数为:72、76、68、78、62、59、64、85、70、75、61、74、87、83、54、76、56、66、68、62,问该校英语水平与全区是否基本一致?设α=0.05
2.分析某班级学生的高考数学成绩是否存在性别上的差异。数据如表所示:
某班级学生的高考数学成绩
性别
数学成绩 75 80
女(n=12) 92 96 86 83 78 87 70 65 70 65 70 78 72 56 3.SPSS自带的数据文件world95.sav中,保存了1995年世界上109个国家和地区的部分指标的数据,其中变量“lifeexpf”,“lifeexpm”分别为各国或地区女性和男性人口的平均寿命。假设将这两个指标数据作为样本,试用配对样本T检验,女性
男(n=18) 85 89 75 58 86 80 78 76 84 89 99 95 82 87 60 85
38
SPSS应用软件试验指导手册
人口的平均寿命是否确实比男性人口的平均寿命长,并给出差异的置信区间。(设α=0.05)
39
SPSS应用软件试验指导手册
试验4:方差分析
一、试验目标与要求
1.帮助学生深入了解方差及方差分析的基本概念,掌握方差分析的基本思想和原理
2.掌握方差分析的过程。
3.增强学生的实践能力,使学生能够利用SPSS统计软件,熟练进行单因素方差分析、两因素方差分析等操作,激发学生的学习兴趣,增强自我学习和研究的能力。
二、试验原理
在现实的生产和经营管理过程中,影响产品质量、数量或销量的因素往往很多。例如,农作物的产量受作物的品种、施肥的多少及种类等的影响;某种商品的销量受商品价格、质量、广告等的影响。为此引入方差分析的方法。
方差分析也是一种假设检验,它是对全部样本观测值的变动进行分解,将某种控制因素下各组样本观测值之间可能存在的由该因素导致的系统性误差与随即误差加以比较,据以推断各组样本之间是否存在显著差异。若存在显著差异,则说明该因素对各总体的影响是显著的。
方差分析有3个基本的概念:观测变量、因素和水平。观测变量是进行方差分析所研究的对象;因素是影响观测变量变化的客观或人为条件;因素的不同类别或不通取值则称为因素的不同水平。在上面的例子中,农作物的产量和商品的销量就是观测变量,作物的品种、施肥种类、商品价格、广告等就是因素。在方差分析中,因素常常是某一个或多个离散型的分类变量。
根据观测变量的个数,可将方差分析分为单变量方差分析和多变量方差分析;根据因素个数,可分为单因素方差分析和多因素方差分析。在SPSS中,有One-way ANOVA(单变量-单因素方差分析)、GLM Univariate(单变量多因素方差分析);GLM Multivariate (多变量多因素方差分析),不同的方差分析方法适用于不同的实际情况。本节仅练习最为常用的单因素单变量方差分析。
三、试验演示内容与步骤
单因素方差分析也称一维方差分析,对两组以上的均值加以比较。检验由单一因素影响的一个分析变量由因素各水平分组的均值之间的差异是否有统计意义。并可以进行两两组间均值的比较,称作组间均值的多重比较。主要采用One-way ANOVA过程。
采用One-way ANOVA过程要求:因变量属于正态分布总体,若因变量的分布明显
40