习题三
1.证明下列问题:
T(1)若矩阵序列?Am?收敛于A,则Am收敛于AT,Am收敛于A;
???????mm?Tm(2)若方阵级数?cmA收敛,则??cmA???cm(A).
m?0m?0?m?0??T证明:(1)设矩阵
(m)Am?(aij)n?n,m?1,2,?,
则
TAm?(a(jim))n?n,Am?(aij(m))n?n,m?1,2,?,
设
A?(aij)n?n,
则
AT?(aji)n?n,A?(aij)n?n,
若矩阵序列?Am?收敛于A,即对任意的i,j?1,2,?,n,有
(m)limaij?aij,
m??则
m??lima(jim)?aji,limaij(m)?aij,i,j?1,2,?,n,
m??TT故Am收敛于A,Am收敛于A.
????m(2)设方阵级数
m?0?c?Am的部分和序列为
S1,S2,?,Sm,?,
m其中Sm?c0?c1A???cmA.
若
m?0?c?mAm收敛,设其和为S,即
?m?0?cmAm?S,或limSm?S,
m??则
m???TlimSm?ST.
而级数即
m?0?cm(A)的部分和即为S,故级数?cm(AT)m收敛,且其和为ST,
TmTm?m?0???m???cmA???cm(AT)m.
m?0?m?0??1?12.已知方阵序列?Am?收敛于A,且Am,A都存在,证明:
T??(1)limAm?A;(2)limAmm??m?????A?1?1.
证明:设矩阵
(m)Am?(aij)n?n,m?1,2,?,A?(aij)n?n,
若矩阵序列?Am?收敛于A,即对任意的i,j?1,2,?,n,有
(m)limaij?aij.
m??(1) 由于对任意的j1,j2,?,jn,有
(m)limakj?akjk, k?1,2,?,n, km??故
m??limj1j2?jn?(?1)?(j1j2?jn))(m)(m)a1(mja2j?anjn=
j1j2?jn?(?1)?(j1j2?jn)a1j1a2j2?anjn,
而
Am?j1j2?jn?(j1j2?jn)(m)(m)(m), (?1)a1ja2j?anj?nA?故
j1j2?jn?(?1)?(j1j2?jn)a1j1a2j2?anjn,
m??limAm?A.
(2) 因为
?1Am?11(m)(Aij)n?n,A?1?(Aij)n?n. AmA其中Aij,Aij分别为矩阵Am与A的代数余子式.
与(1)类似可证明对任意的i,j?1,2,?,n,有
(m)limAij?Aij,
(m)m??结合
m??limAm?A,
有
m??lim11(m)(Aij)n?n=(Aij)n?n, AmA即
m???1limAm?A?1.
??3.设函数矩阵
?sint?sintA(t)???t?1costet0t??t2?, ?t3?dd2ddA(t). A(t),其中t?0,计算limA(t),A(t),2A(t),t?0dtdtdtdt解:根据函数矩阵的极限与导数的概念与计算方法,有
?limsint?t?0sint(1)limA(t)??limt?0?t?0t?lim1?t?0limcostt?0limett?0lim0t?0limt?t?0??010??;
limt2???110?t?0???100??limt3??t?0??sintet01?? 2t?;?3t2???(sint)?(cost)?t???cost?sint??tcost?sintdt2???(2)A(t)??()(e)(t)???2dttt??3????10(t)0?????sint?ddd2(A(t))??(2?t)sint?2tcost(3)2A(t)??dtdtdt?0?2?costet00?2??; 6t??sintdsint(4)A(t)?dtt1costet0tt3?t2
?et[3t2sint?t3(sint?cost)?t?1]?t(2cost?tsint)?t(sin2t?cos2t)
costdtcost?sintA(t)=(5)dtt20?sintet012t 3t2?3t2etcost?3sint(tcost?sint).
4.设函数矩阵
?e2x?A(x)??e?x?3x?xex2e2x0x2??0?, 0??d?x2?A(t)dt计算?A(x)dx和??. ?00dx??1解:根据函数矩阵积分变限积分函数的导数的概念与计算方法,有
?1e2xdx??011(1)?A(x)dx=??e?xdx0?0?13xdx???0?xedx?xdx?? ?2edx0??x20102x011001?3?0??; 0???2????121?2(e?1)?12??1?ee?1?3?02???e2x??x2d?x2?2(2)?A(t)dt?=2xA(x)=?edx??0??3x2?x2ex2x22e02x4??0?. 0??TT5.设y?(y1(t),y2(t),?,yn(t)),A为n阶常数对称矩阵,f(y)?yAy,
证明:
dfdy?2yTA; dtdtddy2(2). y2?2yTdtdtdf证明:(1)?(yTAy)??(yT)?Ay?yTAy??((yT)?Ay)T?yTAy?
dtdy?2yTAy??2yTA,
dtdddy2(2). y2?(yyT)?2yTdtdtdt(1)
6.证明关于迹的下列公式:
ddtr(XXT)?tr(XTX)?2X; dXdXddtr(BX)?tr(XTBT)?BT; (2)dXdXdtr(XTAX)?(A?AT)X. (3)dX(1)
其中X?(xij)m?nB?(bij)n?m,A?(aij)m?m.