16、(2009年宜宾)如图,菱形ABCD的对角线长分别为a、b,以菱形ABCD各边的中点为顶点作矩形A1B1C1D1,然后再以矩形A1B1C1D1的中点为顶点作菱形A2B2C2D2,??,如此下去,得到四边形A2009B2009C2009D2009的面积用含 a、b的代数式表示为 .【答案】
12010()ab. 2DD1D3A2AA3A1B2B第20题图3B3B1D2C3C2CC1
17、(2009 黑龙江大兴安岭)如图,边长为1的菱形ABCD中,?DAB?60?.连结对角线AC,以AC为边作第二个菱形ACC1D1,使 ?D1AC?60?;连结AC1,再以AC1为边作第三个菱形AC1C2D2,使 ?D2AC1?60?;??,按此规律所作的第n个菱形的边长为 .【答案】
C2?3?n?1
D2D1DABC1C
18.(2011山东日照,16,4分)正方形ABCD的边长为4,M、N分别是BC、CD上的两个动点,且始终保持AM⊥MN.当BM= 时,四边形ABCN的面积最大. 【答案】2;
19、(2011四川宜宾)如图,平行四边形ABCD的对角线AC、BD交于点O,E、F在AC上,G、H在BD上,AF=CE,BH=DG. 求证:GF∥HE.
A
E G F B
C
O H
D
【答案】证明:∵平行四边形ABCD中,OA=OC,
由已知:AF=CE AF-OA=CE-OC ∴OF=OE 同理得:OG=OH ∴四边形EGFH是平行四边形 ∴GF∥HE 20、(2011四川成都10分) 如图,已知线段AB∥CD,AD与BC相交于点K,E是线段AD上一动点. (1)若BK=
5CDKC,求的值; 2AB1AD时,猜想线段AB、BC、CD三者之间有怎样21的等量关系?请写出你的结论并予以证明.再探究:当AE=AD (n?2),而其余条件不变
n (2)连接BE,若BE平分∠ABC,则当AE=
时,线段AB、BC、CD三者之间又有怎样的等量关系?请直接写出你的结论,不必证明.
CKDEAB
CKEDABFG
【答案】解:(1)∵AB∥CD,BK=
5CDCK2KC,∴==. 2ABBK5
(2)如图所示,分别过C、D作BE∥CF∥DG分别交于AB的延长线于F、G三点,
∵BE∥DG,点E是AD的点,∴AB=BG;∵CD∥FG,CD∥AG,∴四边形CDGF是平行四边形,∴CD=FG;
∵∠ABE=∠EBC ,BE∥CF,∴∠EBC=∠BCF,∠ABE=∠BFC,∴BC=BF, ∴AB-CD=BG-FG=BF=BC,∴AB=BC+CD. 当AE=
1AD (n?2)时,(n?1)AB=BC+CD. n21、(2011贵州安顺10分)如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE. ⑴说明四边形ACEF是平行四边形;
⑵当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.
【答案】(1)证明:由题意知∠FDC =∠DCA = 90°.∴EF∥CA ∴∠AEF =∠EAC ∵AF = CE = AE ∴∠F =∠AEF =∠EAC =∠ECA 又∵AE = EA ∴△AEC≌△EAF,∴EF = CA,∴四边形ACEF是平行四边形 . (2)当∠B=30°时,四边形ACEF是菱形 . 理由是:∵∠B=30°,∠ACB=90°,∴AC=又∵AE=CE,∴CE=
第25题图
1AB,∵DE垂直平分BC,∴ BE=CE 21AB,∴AC=CE,∴四边形ACEF是菱形. 222、(2011山东滨州10分)如图,在△ABC中,点O是AC边上(端点除外)的一个动点,过点O作直线MN∥BC.设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,连接AE、AF。那么当点O运动到何下时,四边形AECF是矩形?并证明你的结论。
AMBEOFNC(第24题图)
【答案】当点O运动到AC的中点(或OA=OC)时, 四边形AECF是矩形??????2分
证明:∵CE平分∠BCA,∴∠1=∠2,??????3分 又∵MN∥BC, ∴∠1=∠3,
∴∠3=∠2,∴EO=CO. ??????5分 同理,FO=CO??????6分 ∴EO=FO
又OA=OC, ∴四边形AECF是平行四边形??????7分
又∵∠1=∠2,∠4=∠5,∴∠1+∠5=∠2+∠4. ??????8分 又∵∠1+∠5+∠2+∠4=180°∴∠2+∠4=90°??????9分 ∴四边形AECF是矩形??????10分 23、(2011湖北襄阳10分)如图9,点P是正方形ABCD边AB上一点(不与点A,B重合),连接PD并将线段PD绕点P顺时针方向旋转90°得到线段PE,PE交边BC于点F,连接BE,DF.
(1)求证:∠ADP=∠EPB; (2)求∠CBE的度数; (3)当
AP的值等于多少时,△PFD∽△BFP?并说明理由. AB
DCFAPBE
【答案】(1)证明:∵四边形ABCD是正方形
∴∠A=∠PBC=90°,AB=AD,∴∠ADP+∠APD=90° ···················· 1分 ∵∠DPE=90° ∴∠APD+∠EPB=90° ∴∠ADP=∠EPB. ···················································································· 2分 (2)过点E作EG⊥AB交AB的延长线于点G,则∠EGP=∠A=90° ········· 3分
图9
DCFAPBEG
又∵∠ADP=∠EPB,PD=PE,∴△PAD≌△EGP ∴EG=AP,AD=AB=PG,∴AP=EG=BG ············································· 4分 ∴∠CBE=∠EBG=45°. ········································································· 5分 (3)方法一:
当
AP1································································ 6分 ?时,△PFE∽△BFP. ·
AB21AP1···················· 8分 a,∴BF=BP·?a ·
2AD4∵∠ADP=∠FPB,∠A=∠PBF,∴△ADP∽△BPF ································ 7分 设AD=AB=a,则AP=PB=∴PD?AD2?AP2?∴
55a,PF?PB2?BF2?a 24PBBF5?? ···················································································· 9分 PDPF5又∵∠DPF=∠PBF=90°,∴△ADP∽△BFP ········································ 10分 方法二:
假设△ADP∽△BFP,则
PBBF. ······················································· 6分 ?PDPF∵∠ADP=∠FPB,∠A=∠PBF,∴△ADP∽△BPF ······························ 7分 ∴∴
PDAP, ······················································································· 8分 ?PFBFPBAP, ······················································································· 9分 ?BFBFAP1?时,△PFE∽△BFP. 10分 AB2∴PB=AP, ∴当
24. (2011湖南永州10分)探究问题: ⑴方法感悟:如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.
感悟解题方法,并完成下列填空:
将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得: AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°, ∴∠ABG+∠ABF=90°+90°=180°,
因此,点G,B,F在同一条直线上.
∵∠EAF=45° ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°. ∵∠1=∠2, ∴∠1+∠3=45°. 即∠GAF=∠_________. 又AG=AE,AF=AF
平行四边形经典练习题(3套)附带详细解答过程
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)