好文档 - 专业文书写作范文服务资料分享网站

通信原理MATLAB

天下 分享 时间: 加入收藏 我要投稿 点赞

>> % 文件名 e_gauss.m % 高斯曲线 clear;

a=0;sigma=1; x=-10:0.0001:10;

y=(1/((sqrt(2*pi))*sigma))*exp(-((x-a).^2)/(2*sigma.^2)); plot(x,y);

xlabel('变量x'); ylabel('幅值(y)');

title('正态分布的概率密度(高斯曲线)');

>> % 文件名 e_gauss.m % 高斯曲线 clear;

a=0;sigma=3; x=-10:0.0001:10;

y=(1/((sqrt(2*pi))*sigma))*exp(-((x-a).^2)/(2*sigma.^2)); plot(x,y);

xlabel('变量x'); ylabel('幅值(y)');

title('正态分布的概率密度(高斯曲线)');

>> % 文件名 e_gauss.m % 高斯曲线 clear;

a=3;sigma=1; x=-10:0.0001:10;

y=(1/((sqrt(2*pi))*sigma))*exp(-((x-a).^2)/(2*sigma.^2)); plot(x,y);

xlabel('变量x'); ylabel('幅值(y)');

title('正态分布的概率密度(高斯曲线)');

>> clear;

a2=0;sigma2=1; x2=-10:0.0001:10;

y2=(1/((sqrt(2*pi))*sigma2))*exp(-((x2-a2).^2)/(2*sigma2.^2)); subplot(3,1,1);plot(x2,y2,'b'); a3=6;sigma3=1; x3=-10:0.0001:10;

y3=(1/((sqrt(2*pi))*sigma3))*exp(-((x3-a3).^2)/(2*sigma3.^2)); subplot(3,1,2);plot(x3,y3,'g'); a1=-6;sigma1=1; x1=-10:0.0001:10;

y1=(1/((sqrt(2*pi))*sigma1))*exp(-((x1-a1).^2)/(2*sigma1.^2)); subplot(3,1,3);plot(x1,y1,'r'); xlabel('变量x'); ylabel('幅值(y)');

title('正态分布的概率密度(高斯曲线)');

>> clear;

a2=0;sigma2=0.5; x2=-10:0.0001:10;

y2=(1/((sqrt(2*pi))*sigma2))*exp(-((x2-a2).^2)/(2*sigma2.^2)); subplot(4,1,1);plot(x2,y2,'b'); a3=0;sigma3=1; x3=-10:0.0001:10;

y3=(1/((sqrt(2*pi))*sigma3))*exp(-((x3-a3).^2)/(2*sigma3.^2)); subplot(4,1,2);plot(x3,y3,'g'); a1=0;sigma1=2; x1=-10:0.0001:10;

y1=(1/((sqrt(2*pi))*sigma1))*exp(-((x1-a1).^2)/(2*sigma1.^2)); subplot(4,1,3);plot(x1,y1,'r'); a4=0;sigma4=4; x4=-10:0.0001:10;

y4=(1/((sqrt(2*pi))*sigma4))*exp(-((x4-a4).^2)/(2*sigma4.^2)); subplot(4,1,4);plot(x4,y4,'y'); xlabel('变量x'); ylabel('幅值(y)');

title('正态分布的概率密度(高斯曲线)');

>> clear;

a1=-6;sigma1=1; x1=-10:0.0001:10;

y1=(1/((sqrt(2*pi))*sigma1))*exp(-((x1-a1).^2)/(2*sigma1.^2)); a2=0;sigma2=1; x2=-10:0.0001:10;

y2=(1/((sqrt(2*pi))*sigma2))*exp(-((x2-a2).^2)/(2*sigma2.^2)); a3=6;sigma3=1; x3=-10:0.0001:10;

y3=(1/((sqrt(2*pi))*sigma3))*exp(-((x3-a3).^2)/(2*sigma3.^2)); plot(x1,y1,'g',x2,y2,'r',x3,y3,'b'); xlabel('变量x'); ylabel('幅值(y)');

title('正态分布的概率密度(高斯曲线)');

>> clear;

a1=0;sigma1=0.5; x1=-10:0.0001:10;

y1=(1/((sqrt(2*pi))*sigma1))*exp(-((x1-a1).^2)/(2*sigma1.^2)); a2=0;sigma2=1; x2=-10:0.0001:10;

y2=(1/((sqrt(2*pi))*sigma2))*exp(-((x2-a2).^2)/(2*sigma2.^2)); a3=0;sigma3=2; x3=-10:0.0001:10;

y3=(1/((sqrt(2*pi))*sigma3))*exp(-((x3-a3).^2)/(2*sigma3.^2)); a4=0;sigma4=4; x4=-10:0.0001:10;

y4=(1/((sqrt(2*pi))*sigma4))*exp(-((x4-a4).^2)/(2*sigma4.^2)); plot(x1,y1,'g',x2,y2,'r',x3,y3,'b',x4,y4,'y'); xlabel('变量x'); ylabel('幅值(y)');

title('正态分布的概率密度(高斯曲线)');

通信原理MATLAB

>>%文件名e_gauss.m%高斯曲线clear;a=0;sigma=1;x=-10:0.0001:10;y=(1/((sqrt(2*pi))*sigma))*exp(-((x-a).^2)/(2*sigma.^2));plot(x,y);xlabel('变量x');ylabel('幅值(y)');title
推荐度:
点击下载文档文档为doc格式
3nvcx1xbzi9pg7z7hdvh6c4rp7oypx00std
领取福利

微信扫码领取福利

微信扫码分享