好文档 - 专业文书写作范文服务资料分享网站

高等数学II第十章-曲线积分与曲面积分

天下 分享 时间: 加入收藏 我要投稿 点赞

2?21?0???[x2?(x2?y2)]dxdy???(x2?y2)dxdy??d??r2rdr?8?

002DxyDxy1 z y ?1 x (其中利用对称性:

12((x?y2)2xdxdy?0, ??4Dxy221由于Dxy:x?y?4易知:??xdxdy???ydxdy,即??xdxdy???(x2?y2)dxdy) 2DxyDxyDxyDxy222?1 2把对坐标的曲面积分化为对面积的曲面积分: (1)

22x?y?1所截部分的下侧; ∑:平面被柱面P(x,y,z)dydz?Q(x,y,z)dzdx?R(x,y,z)dxdyz?x?1???解:曲面在(x,y,z)处的法向量为(?1,0,?1),故:cos???1(?1)2?02?(?1)2??2,故 2??2 2cos??0(?1)2?02?(?1)2?0,cos???1(?1)2?02?(?1)2??P(x,y,z)dydz?Q(x,y,z)dzdx?R(x,y,z)dxdy

????[P(x,y,z)cos??Q(x,y,z)cos??R(x,y,z)cos?]dS???2[P(x,y,z)?R(x,y,z)]dS ??2?(注意对于非定向曲面z?x?1可为(1,0,1),或?(1,0,1)?(?1,0,?1),但对于定向曲面朝下则第三个分量应为负) (2)

22P(x,y,z)dydz?Q(x,y,z)dzdx?R(x,y,z)dxdyy?2x?z∑:抛物面被平面y?2所截的部分的左侧. ???解:曲面在(x,y,z)处的法向量为(4x,?1,2z),故:cos??4x(4x)?(?1)?(2z)222?4x1?16x?4z22

cos???11?16x?4z22,cos??2z1?16x?4z22,故

??P(x,y,z)dydz?Q(x,y,z)dzdx?R(x,y,z)dxdy

????[P(x,y,z)cos??Q(x,y,z)cos??R(x,y,z)cos?]dS?????224xP(x,y,z)?Q(x,y,z)?2zR(x,y,z)1?16x?4z22dS

(注意对于非定向曲面y?2x?z可为(4x,?1,2z),或?(4x,?1,2z)?(?4x,1,?2z),但对于定向曲面朝做则第二个分量应为负) 3.计算曲面积分

??[f(x,y,z)?x]dydz?[2f(x,y,z)?y]dzdx?[f(x,y,z)?z]dxdy

?其中f(x,y,z)为连续函数,∑是平面x?y?z?1在第四卦限内的上侧.

解:由∑是平面x?y?z?1在第四卦限内的上侧,故曲面在(x,y,z)处的法向量为(1,?1,1)

故cos??333,cos???,cos??,则 333??[f(x,y,z)?x]dydz?[2f(x,y,z)?y]dzdx?[f(x,y,z)?z]dxdy

????{[f(x,y,z)?x]333?[2f(x,y,z)?y](?)?[f(x,y,z)?z]}dS ?333?33??(x?y?z)dS?3?3??dS?1 ?2(其中平面?的面积为

?在xoy面投影区域面积cos?)

4. 计算

??(x2?y2)dzdx?zdxdy,∑为锥面z?x2?y2上满足x?0,?解:(采用投影面转换法计算较为简单) 由zyy?,有

x2?y2??(x2?y2)dzdx?zdxdy ????[(x2?y2)(?zy)?z]dxdy

????(?yx2?y2?z)dxdy

?又∑为锥面z?x2?y2Dxy:x2?y2?1,x?0,y?0,朝下,

??(x2?y2)dzdx?zdxdy??yx2?y2?z)dxdy

???(??????(?yx2?y2?x2?y2)dxdy???2d??100(1?rsin?)r2dr

Dxy????20d??1r3sin?dr??2100d??0r2dr

???20sin?d??1r3dr??06?14??6 §6 Gauss公式与Stokes公式

1.利用高斯公式计算下列曲面积分. (1)ò??x3dydz?y3dzdx?z3dxdy其中∑是球面x2?y2?z2?1的外侧. ?解

ò??x3dydz?y3dzdx?z3dxdy ??????(3x2?3y2?3z2)dxdydz

?3????(x2?y2?z2)dxdydz

y?0,z?1的那部分曲面的下侧. ??d??d??r2r2sin?dr

0002??1(本题中若写成32)

????(x2?y2?z2)dxdydz?3???dxdydz是错误的,为什么?)

?22222其中∑为由曲面与所围立体的表面的外侧. 2xzdydz?yzdzdx?zdxdyz?x?yz?2?x?yò???解:

ò??2xzdydz?yzdzdx?zdxdy

???2z?2 ????(2z?z?2z)dxdydz????zdxdydz

(若采用先二后一的方法计算三重积分)

z?1 ???1??2,其中?1:0?z?1,Dz:x2?y2?z

?2:1?z?2,Dz:2?(x2?y2)?z

????zdxdydz??dz??zdxdy??dz??zdxdy

0Dz1Dz213212??zdz??dxdy??zdz??dxdy???zdz???z(2?z2)dz?0Dz1Dz011?2

(若采用柱坐标方法计算三重积分)

?:r?z?2?r2,0?r?1,0???2?

????zdxdydz??d??rdr?002?12?r2rzdz??2

2.计算下列曲面积分: (1)

??yzdzdx?2dxdy,∑是球面x?2?y2?z2?4(z?0)的上侧.

解;作曲面?1:z?0,Dxy:x?y?4,朝下。则

22??yzdzdx?2dxdy

?? ?1????1??yzdzdx?2dxdy???yzdzdx?2dxdy

?1 ????zdxdydz???yzdzdx?2dxdy

??1其中?:x?y?z?4(z?0)

222?????z2dz?4?(先二后一) zdxdydz??dz??zdxdy??zg00Dz22由?1:z?0,Dxy:x?y?4,朝下,有

22??yzdzdx?2dxdy?0?2??dxdy??2??dxdy??8?,故

?1?1Dxy??yzdzdx?2dxdy?12?

?(2)

22322z?4?x?yxdydz?2xzdzdx?3ydxdy,∑为抛物面被平面z?0所截下的部分的下侧. ???解;作曲面?1:z?0,Dxy:x2?y2?4,朝上。则

322xdydz?2xzdzdx?3ydxdy ???????1??x3dydz?2xz2dzdx?3y2dxdy???x3dydz?2xz2dzdx?3y2dxdy ?1?????(3x2?0?0)dxdydz???x3dydz?2xz2dzdx?3y2dxdy

??1? 其中?:z?4?x?y(z?0)

22????xdxdydz??d??rdr?0024?r222?24?r20r2cos2?dz

20??cos2?d??r3dr?002?0dz???r3?4?r2?dr?216? 3?1 (用柱坐标?:0?z?4?r,0?r?2,0???2?,) 由?1:z?0,Dxy:x2?y2?4,朝上有

??xdydz?2xzdzdx?3ydxdy?0?0???3ydxdy

?1?13222???3ydxdy?3?d??rsin?dr?3?sin?d??r3dr?12?

Dxy0022?2322?2200故

322xdydz?2xzdzdx?3ydxdy??16??12???28? ???(其中利用定积分的几何意义有

?2?0cos2?d???sin2?d??02?12?2(sin??cos?)d???) ?0223:计算曲面积分

ò??xzdydz?(x?2y?z3)dzdx?(2xy?y2z)dxdy其中∑为z?0和z?a2?x2?y2所围曲面外侧.

a a a a 解:

2232ò??xzdydz?(xy?z)dzdx?(2xy?yz)dxdy ?2??0????(z2?x2?y2)dxdydz??d??2d??r2r2sin?dr

?00a??d??2sin?d??002??a02rrdr??a5

5224.设f是连续可导函数,计算曲面积分

1y1y333xdydz?[f()?y]dzdx+[f()?z]dxdy其中∑为锥面 ò??zzyz?x?解:

y2?z2与两球面x2?y2?z2?1及x2?y2?z2?4所围立体表面的外侧.

1y1y33xdydz?[f()?y]dzdx+[f()?z3]dxdy ò??zzyz?????(3x2??1'y1'y22f()?3y?f()?3z)dxdydz 22zzzz????(3x2?3y2?3z2)dxdydz

???d??d??r2r2sin?dr

04012??2??d??sin?d??r2r2dr?04012??293(2?2)? 55.利用斯托克斯公式计算下列曲线积分:

?x2?y2?z2?a2(1)??ydx?zdy?xdz,?为圆周:?,从z轴正向看去,取逆时针方向.

x?y?z?0?

dydzdzdxdxdy解:原积分=

?????xy??yz?????dydz?dzdx?dxdy????dydz?dzdx?dxdy ?z??x?:x?y?z?0 (其中?如图它是x?y?z?0在球内的部分,朝上。)

?的法向量为?1,1,1?,故 ????dydz?dzdx?dxdy????(??333??)dS 333??3??dS??3?a2

??x2?y2?a2?(2)??(y?z)dx?(z?x)dy?(x?y)dz,?为椭圆?xz(a,b?0),从z轴正向看去,取逆时针方向.

???1?abdydz

解:原积分=

dzdxdxdy??yz?x?????2dydz?2dzdx?2dxdy ?z?x?y?????xy?zxz??2??dydz?dzdx?dxdy(其中?它是??1在圆柱内的部分,朝上)

ab??的法向量为?b,0,a?,故

原积分??2??dydz?dzdx?dxdy??2??(??2ba?b22?aa?b22)dS

??2(ba?b2?aa?b22)??dS??2(?ba?b22?aa?b22)?a2aa2?b2??2?a(a?b)

高等数学II第十章-曲线积分与曲面积分

2?21?0???[x2?(x2?y2)]dxdy???(x2?y2)dxdy??d??r2rdr?8?002DxyDxy1zy?1x(其中利用对称性:12((x?y2)2xdxdy?0,??4Dxy221由于Dxy:x?y?4易知:??xdxdy???ydxdy,即??xdxdy???(x2?y2)dxdy)2DxyDxyDxyDxy222?1
推荐度:
点击下载文档文档为doc格式
3npop7r59k6m3qp9xkwe9ersa9ps1u00x90
领取福利

微信扫码领取福利

微信扫码分享