好文档 - 专业文书写作范文服务资料分享网站

高等数学II第十章-曲线积分与曲面积分

天下 分享 时间: 加入收藏 我要投稿 点赞

?2?0cos2???sin2??02?12?12?22(cos??sin?)d??d??? ??0022?x?t?(6)??(y2?z2)dx?2yzdy?x2dz,其中?是曲线:?y?t2上t由0到2?的一段弧.

?3?z?t解:

??(y2?z2)dx?2yzdy?x2dz??2?0?3t6?2t4?dt??6453847??? 573.计算?L(x?y)dx?(y?x)dy,其中L:(1)抛物线y2?x上从点(1,1)到点(4,2)的一段弧;(2)从点(1,1)到点(4,2)的直线段;

(3)曲线x?2t2?t?1,y?t2?1上从点(1,1)到点(4,2)的一段弧.

?x?y2解:(1)由L:??y?y?x?x?(2)由L:?12y?x??33?23422? (y?y)?2y?(y?y)dy?y:1?2,得?(x?y)dx?(y?x)dy????1?L312121??x:1?4,得?(x?y)dx?(y?x)dy???(x?x?)?(x??x)g?dx?11

1L33333??4?x?2t2?t?1132?22??t:0?1(3)由?,得 (x?y)dx?(y?x)dy?(3t?t?2)4t?1?(t?t?2)g2tdt??????20?L3??y?t?14.证明: ?Lsin(x2?y2)dx?cos(xy)dy?2l其中l为平面上光滑曲线L的长度. (提示:转化为对弧长的曲线积分)

证明:

??Lsin(x2?y2)dx?cos(xy)dy??L[sin(x2?y2)cos??cos(xy)cos?]ds

其中

cos?,cos?是切向量的方向余弦,故满足cos2??cos2??1。

LLsin(x2?y2)dx?cos(xy)dy??sin(x2?y2)cos??cos(xy)cos?ds

L??????????[(sin(x2?y2)cos??cos(xy)cos?)]2ds

(sin2(x2?y2)cos2??2sin(x2?y2)cos?cos(xy)cos?)?cos2(xy)cos2?)ds (sin2(x2?y2)cos2??[sin2(x2?y2)cos2??cos2?cos2(xy)]?cos2(xy)cos2?ds(sin2(x2?y2)[cos2??cos2?]?cos2(xy)[cos2??cos2?]ds(sin2(x2?y2)?cos2(xy)ds??LLLLL2ds?2l

法二:证明:

?Lsin(x2?y2)dx?cos(xy)dy??L[sin(x2?y2)cos??cos(xy)cos?]ds

其中

cos?,cos?是切向量的方向余弦,故满足cos2??cos2??1。

2?sin(xL?y2)dx?cos(xy)dy??sin(x2?y2)cos??cos(xy)cos?ds

L设向量n?sin(x2?y2),cos(xy),ne??cos?,cos??则

??sin(x2?y2)cos??cos(xy)cos??n?ne

?nne?sin2(x2?y2)?cos2(xy)?2,

?Lsin(x2?y2)dx?cos(xy)dy??Lsin(x2?y2)cos??cos(xy)cos?ds。?L2ds?2l

§3 Green公式

1. 用曲线积分计算下列曲线所围平面图形的面积: (1)椭圆:

x2a2?y2b2?1;

解:若:L:??x?acos?112?22?xdy?ydx?abcos??absin???:0?2?,则A???Dd??????d???ab L0?22y?bsin??(2)星形线:x?acos3t,y?asin3t,(a?0,0?t?2?).

3?112??x?acost242242?t:0?2?解:若:L:?,则A?d??xdy?ydx?3acostsint?3asintcost?dt ???????3DL022??y?asint3a2?2?2?03a2??costsint?3asintcost??dt?242242?2?03a2sintcostdt?822?2?0sin22tdt

3a2?8?2?01?cos4t3dt??a2 28x2?y2?a22.用格林公式计算下列曲线积分

(1)?Lxy2dy?x2ydx,其中L为圆周(a?0),取逆时针方向;

(2)?ex[(1?cosy)dx?(y?siny)dy],其中L为闭区域D:0?x??,0?y?sinx的正向边界.

L解:(1)QP??xy,Q?xy,?222222?Q?P??x2?y2,又L逆时针方向,设D:x2?y2?a2,所以 ?x?y2?a142xydy?xydx?x?yd??d?rrdr??a ????L??D?0?02(注意

22222xydy?xydx?x?yd??a????????d?,为什么?) LDDy?sinx (2)QP?e(1?cosy),Q??(y?siny),?x?Q?P???yex ?x?yx? ?yedy??edx?0x所以?e[(1?cosy)dx?(y?siny)dy]?Lx???D?yed???dx?0?sinx?xsinx001?x2?ydy???esinxdx

20?1?x1?cos2x1?x111???edx??[?edx??excos2xdx]?(1?e?)??e??1??(1?e?)

0202404205(其中

??0excos2xdx?excos2x2?0?2?exsin2xdx?e??1?2[exsin2x02?0?2?excos2xdx]

0??e??1?4?excos2xdx。所以?excos2xdx?0??01?e?1?) ?53.计算积分?Lxdy?ydx4x2?y2,其中L为圆周(x?1)2?y2?R2(R?1)(按逆时针方向);

解QP??yx?Q?P,Q?,???0 22224x?y4x?y?x?y?yx222,Q?在(x?1)?y?R(R?1)所围的区域D内有连续偏导,满足格22224x?y4x?y(1)故当R?1时,QP?林公式条件。

xdy?ydx??L4x2?y2???D0d??0

222(2)故当R?1时,(x?1)?y?R(R?1)所围的区域D含有(0,0)点,故?P?有点没有连续偏导,不满足格林公式条件。不能直接用格林公式条件。

?yx,Q?在区域D4x2?y24x2?y21?x??cos??222?:0?2?。 做曲线l:4x?y??(?取得足够小保证l含在L所围区域)方向为逆时针,即l?2??y??sin?则曲线L?l围成复连通区域D1且为D1的正向边界。故在复连通区域D1??L?l?xdy?ydx满足格林公式条件,故

4x2?y2?L?l?2?xdy?ydxxdy?ydxxdy?ydxxdy?ydx?0d??0即?????????L4x2?y2l4x2?y2l4x2?y204x2?y2??D1121?cos2???2sin2?22d? 2??12?222222l:4x?y??l:x?y??(注之所以取曲线是方便计算,若取则计算麻烦) d???2?0(3,4)4.证明下列曲线积分在xoy面上与路径无关,并计算积分. (1)?(1,2)(6xy2?y3)dx?(6x2y?3xy2)dy

解:QP?6xy?y,Q?6xy?3xy,所以单连通区域xoy面有连续偏导,且 2322C(3,4) A(1,2) B(3,2) ?Q?P?12x?3y2?,所以曲线积分在xoy面上与路径无关。 ?x?y法一:?(1,2)(6xy2?y3)dx?(6x2y?3xy2)dy?((3,4)?AB??)(6xy2?y3)dx?(6x2y?3xy2)dy BC34?x?x?x?323其中AB:?x:1?3BC:?y:2?4??(6x?2?2)dx??(6?32?y?3?3?y2)dy?236

12?y?2?y?yd??y?d??y??u2222?6xy?3xy??0 ?6xy?3xy得法二设:u(x,y)??(6xy?y)dx?3xy?xy???y?则?ydydy23223u(x,y)?3x2y2?xy3?C,故?(3,4)(1,2)(6xy2?y3)dx?(6x2y?3xy2)dy?u(3,4)?u(1,2)?236

(2)?(1,0)(2xy?y4?3)dx?(x2?4xy3)dy

解:QP?2xy?y?3,Q?x?4xy,所以单连通区域xoy面有连续偏导,且 423(2,1)?Q?P?2x?4y3?,所以曲线积分在xoy面上与路径无关。 ?x?y法一:

C(2,1) A(1,0) B(2,0) ?(2,1)(1,0)(2xy?y4?3)dx?(x2?4xy3)dy?(???)(2xy?y4?3)dx?(x2?4xy3)dy ABBC21?x?x?x?24其中AB:?x:1?2BC:?y:0?1??(2x?0?0?3)dx??(22?4?2?y3)dy?5 10?y?0?y?y法二设:u(x,y)?(2xy?y4?3)dx???y??x2y?xy4?3x???y?

?d??y?d??y??u?x2?4xy3??x2?4xy3,得?0,所以u(x,y)?x2y?xy4?3x?C, ?ydydy故?(1,0)(2xy?y4?3)dx?(x2?4xy3)dy=u(2,1)?u(1,0)?5 5.用适当的方法计算下列曲线积分

(1)?L(xsin2y?y)dx?(x2cos2y?1)dy,其中L为圆周x2?y2?R2(R?0)上从点(R, 0)依逆时针方向到点(0, R)的弧段;

解:由 P?xsin2y?y,Q?xcos2y?1,有

2(2,1)B A ?Q?P??1 ?x?yDD

O A ??OA?L?BO(xsin2y?y)dx?(x2cos2y?1)dy???d?y:R?0

其中OA:??x?x?x?0x:0?R,BO:??y?0?y?y2(xsin2y?y)dx?(xcos2y?1)dy ??L???OA?L?BO(xsin2y?y)dx?(x2cos2y?1)dy?[?2OA??](xsin2y?y)dx?(x2cos2y?1)dy

BO???d??[?DOA??](xsin2y?y)dx?(xcos2y?1)dy?BO?R24??(xsin(2?0)?0)dx??(0cos2y?1)dy

0RR0??R24?0??(0cos2y?1)dy?R0?R24?R

B(1,2) (2)

?Lydx?xdy,其中L为从点(2, 1)到点(1, 2)的直线段. 2x?Q?Py1??0积分与路径无关,则 ,有,Q??2?x?yxxC(1,1) A(2,1) 解:由 P??L?x?x?x?1ydx?xdyydx?xdy?[?]其中,AC:x:2?1CB:???AC?CBx2x2y?1??y?yy:1?2

?L1dx2?dyydx?xdyydx?xdy3 ?[?]????2222????ACCB21xxx12(注意:若应用积分与路径无关,则必须保证在添加的曲线与原曲线所围的区域是单连通的,和P,Q在区域有连续偏导数,如该题中区域就不能含原点)

6.解下列全微分方程

(1)(x3?3xy2)dx?(y3?3x2y)dy?0; 解: P?x?3xy,Q?y?3xy,在xoy面有法一u?x,y??3232?Q?P??6xy?,得方程为全微分方程。 ?x?yB(x,y) A(x,0) ??x3?3xy2?dx???y??14322x?xy???y?,故 42d??y?d??y??u1??3x2y??y3?3x2y,得?y3,即??y??y4 ?ydydy4所以方程通解为

1432214x?xy?y?C 424O(0,0) 法二,令u?x,y???(x,y)(0,0)(x3?3xy2)dx?(y3?3x2y)dy

?(???)(x3?3xy2)dx?(y3?3x2y)dy其中

OAABxy?x?x?x?x1133OA:?x:0?xAB:?y:0?y??(x?3x?0)dx?0??0??(y3?3x2y)dy?x4?y4?x2y2

00442?y?0?y?y所以方程通解为(2)

1432214x?xy?y?C 4242xdx?ydy1?x?y2?xdy?ydx?0.

解:P?x1?x2?y2?y,Q?y1?x2?y2?x,在xoy面有

?Q?P?,得方程为全微分方程。 ?x?y??x法一u?x,y?????y?dx???y??1?x2?y2?xy???y?,故

?1?x2?y2???d??y?d??y??uyy?0,即??y??0 ??x???x,得

2222dy?ydy1?x?y1?x?y所以方程通解为1?x?y?xy?C 法二,令u?x,y??22B(x,y) A(x,0) ?(x,y)xdx?ydy1?x?y22(0,0)?xdy?ydx?(???)OAABxdx?ydy1?x?y22?xdy?ydx O(0,0) xy?x?x?x?xxydx?0?0??(其中OA:??x)dy x:0?xAB:?y:0?y??220220y?0y?y1?x?01?x?y???1?x2?1?(1?x2?y2?xy)y0?1?x2?1?1?x2?y2?xy?(1?x2?0)?1?x2?y2?xy?1

高等数学II第十章-曲线积分与曲面积分

?2?0cos2???sin2??02?12?12?22(cos??sin?)d??d?????0022?x?t?(6)??(y2?z2)dx?2yzdy?x2dz,其中?是曲线:?y?t2上t由0到2?的一段弧.?3?z?t解:??(y2?z2)dx?2yzdy?x2dz??2?0?3t6?2t4?dt??6453847???573.计算?L(x?y)dx
推荐度:
点击下载文档文档为doc格式
3npop7r59k6m3qp9xkwe9ersa9ps1u00x90
领取福利

微信扫码领取福利

微信扫码分享