.
??解: 令x?1?t,级数?an(x?1)化为?antn,问题转化为:t??2处收敛,确定t?1处
nn?1n?1是否收敛.由阿贝尔定理知是绝对收敛的,故应选B. 二 31—35 解:f[f(x)]?f(x)x1?(x?1,x?).
1?f(x)1?2x211?cosxx22
x2f(x)f(x)1?cosx1?cosx2?1. 解:lim??????lim???????limx?0xsinxxsinxx?0x?0x2x22?2a??2a?1?lim???1??x??e2axx??x?2a?????lim???a?e3a, 解:因lim??xxx???(?a)e?x?a?x???a??aa???1??lim?1???x?x???x?xxx?2a2a所以有 e3a?8?a?ln2.
解:函数在(??,??)内处处连续,当然在x?0处一定连续,又因为
limf(x)?limx?0sinx?1;x?0xf(0)?a,所以limf(x)?f(0)?a?1.
x?0解:因y??36—40
31??k?y??x?3y?4?0. 2x?2(1?x)3解:f?(x)?2x?1?2??1?f(2)?f(0) ???1.
2?01?1??1??1??1??1??0?x??0,?,应填?0,?或?0,?或?0,?或?0,?. 解:f?(x)?1?2x?4??4??4??4??4?解:?xf??(x)dx??xdf?(x)?xf?(x)0??f?(x)dx?2f?(2)?f(2)?f(0)?7.
0002222解:因向量b与a共线,b可设为?k,?2k,3k?,
a?b?56?k?4k?9k?56?k?4,所以b??4,?8,12?. 解:z?e41—45
x2?y222?z?2zx2?y2??2xe?2?2(1?2x2)ex?y. ?x?x’.
.
??f?4x?y?0???x解:??(x,y)?(0,0).
?f??x?4y?0???y解:利用对称性知其值为0或??xyd???d??r4cos2?sin?dr?0.
D0022?3解:积分区域D?(x,y)|0?x?1,x?y?x??(x,y)|0?y?1,y2?x?y?, 则有?dx?01x??xf(x,y)dy??dy?2f(x,y)dx.
0y1y解:y???2y??3y?0的通解为y?C1e3x?C2e?x,根据方程解的结构,原方程的通解为
1y?C1e3x?C2e?x?xe?x.
4解:当n?2时,un?Sn?Sn?1?n3?(n?1)3?3n2?3n?1. 三 46—50
1?ex?1?xex?1?x?1?lim解:lim??x??lim 2x?0xx?0x(ex?1)x?0e?1x??ex?1x1?lim?. ?limx?02xx?02x2
解:方程两边对x求导得
exy(xy)??y?y?lnx?2cos2x x 即 exyx(y?xy?)?y?y?xlnx?2xcos2x (x2exy?xlnx)y??2xcos2x?exyxy?y
2xcos2x?exyxy?ydy所以 ?y??. 2xyxe?xlnxdx 解:方程?xf(x)dx?e?2x?C两边对x求导得 xf(x)??2e?2x?2e?2x,即f(x)?,
x’.
.
所以
11??xe2x. f(x)2 故?111dx???xe2xdx???xde2x f(x)241111 ??xe2x??e2xdx??xe2x?e2x?C.
4448 解:?|x(x?1)|dx??|x(x?1)|dx??|x(x?1)|dx??|x(x?1)|dx
?4?40014014 ??x(x?1)dx??x(1?x)dx??x(x?1)dx
?40114?x3x2??x2x3??x3x2? ????????????
?32??4?23?0?32?1014?64116411?8????8???43. 323332解:因
2222?z?ex?xy?y(x2?xy?y2)?x?ex?xy?y(2x?y), ?x2222?z?ex?xy?y(x2?xy?y2)?y?ex?xy?y(x?2y), ?y且它们在定义域都连续,从而函数z?exdz?2?xy?y2可微,并有
22?z?zdx?dy?ex?xy?y[(2x?y)dx?(x?2y)dy]. ?x?y51—53
解:积分区域D如图所示: 把D看作Y型区域,且有
y?D??(x,y)|0?y?2,?x?2?2yy 2 y?2x?x?y 2y?x?x?y
?y? ?x o 故有??(2x?y)d???dy?y(2x?y)dx
D022y2??(x2?xy)ydy??02051052ydy?y3?. 412032解:这是一阶线性非齐次微分方程,
它对应的齐次微分方程y??2xy?0的通解为y?Cex,
2’.
.
设原方程的解为y?C(x)ex代入方程得C?(x)ex?xe?x, 即有 C?(x)?xe?2x, 所以 C(x)??xe?2xdx??222221?2x21?2x22ed(?2x)??e?C, 4?4212 故原方程的通解为y??e?x?Cex.
4解:这是标准缺项的幂级数,考察正项级数?n?1?n2nx, 2nun?1n?12nx22?xlimn?1??, 因l?limn??un??2n2n?x2n?1,即|x|?2时,级数?nx2n是绝对收敛的; 当l?2n?12?x2n?1,即|x|?2时,级数?nx2n是发散的; 当l?2n?12??x2n2n?1,即x??2时,级数?nx化为?n,显然是发散的。 当l?2n?1n?12 故原级数的收敛区间为?2,四
54
解:场地如图所示:
?2.
?x x 设增加的三面墙的长度分别为x,y,x; y
总长为z,则有z?2x?y,xy?64, 从而z?2x?令z??2?6464,问题就转化为求函数z?2x?最小值问题. xx64?264??z(42)?x?42得唯一驻点,且有?0x3x?4x2?0,
2所以x?42是极小值点,即为最小值点,此时y?82. 故,另增的三面墙的长度分别为42m,82m,42m时,增加三面围墙的总长最小. 55
解:平面图形D如图所示: yy?x2?x?y3 ’.
x.
把D看作Y区域,且y?[0,3], 代入Y型区域绕y所成旋转一 周所得体积公式有
Vy????f2(y)?g2(y)?dy????(6?y)2?y?????dy 00?y2y3?2 ?π?(36?13y?y)dy?π?36y?13??
023?0?3333 ?五
56
117?. 2证明:因为F?(x)?f(x)?aa1在?a,b?上有意义,所以F(x)在?a,b?上连续,且有f(x)F(a)??f(t)dt??abba1b11dt??dt???dt?0,
baf(t)f(t)f(t)b1dt??f(t)dt?0,
af(t)F(b)??f(t)dt??abb由连续函数在闭区间上的零点定理知,F(x)?0在(a,b)内至少有一个实根; 又因为F?(x)?f(x)?内至多有一个实根;
故F(x)?0在(a,b)内有唯一实根.
1?0,知F(x)在(a,b)内是增函数.从而知F(x)?0在(a,b)f(x)’.