好文档 - 专业文书写作范文服务资料分享网站

行测数学运算题库 

天下 分享 时间: 加入收藏 我要投稿 点赞

解决好比例问题,关键要从两点入手:第一,“和谁比”;第二,“增加或下降多少”。 例1 b比a增加了20%,则b是a的多少? a又是b的多少呢?

解析:可根据方程的思想列式得 a×(1+20%)=b,所以b是a的1.2倍。 A/b=1/1.2=5/6,所以a 是b的5/6。

例2 养鱼塘里养了一批鱼,第一次捕上来200尾,做好标记后放回鱼塘,数日后再捕上100尾,发现有标记的鱼为5尾,问鱼塘里大约有多少尾鱼?

A.200 B.4000 C.5000 D.6000 (2004年中央B类真题) 解析:方程法:可设鱼塘有X尾鱼,则可列方程,100/5=X/200,解得X=4000,选择B。

例3 2001年,某公司所销售的计算机台数比上一年度上升了20%,而每台的价格比上一年度下降了20%。如果2001年该公司的计算机销售额为3000万元,那么2000年的计算机销售额大约是多少? A.2900万元 B.3000万元 C.3100万元 D.3300万元(2003年中央A类真题)

解析:方程法:可设2000年时,销售的计算机台数为X,每台的价格为Y,显然由题意可知,2001年的计算机的销售额=X(1+20%)Y(1-20%),也即3000万=0.96XY,显然XY≈3100。答案为C。

特殊方法:对一商品价格而言,如果上涨X后又下降X,求此时的商品价格原价的多少?或者下降X再上涨X,求此时的商品价格原价的多少?只要上涨和下降的百分比相同,我们就可运用简化公式,1-X 。但如果上涨或下降的百分比不相同时则不可运用简化公式,需要一步一步来。对于此题而言,计算机台数比上一年度上升了20%,每台的价格比上一年度下降了20%,因为销售额=销售台数×每台销售价格,所以根据乘法的交换律我们可以看作是销售额上涨了20%又下降了20%,因而2001年是2000年的1-(20%) =0.96,2001年的销售额为3000万,则2000年销售额为3000÷0.96≈3100。

例4 生产出来的一批衬衫中大号和小号各占一半。其中25%是白色的,75%是蓝色的。如果这批衬衫总共有100件,其中大号白色衬衫有10件,问小号蓝色衬衫有多少件?

A.15 B.25 C.35 D.40 (2003年中央A类真题) 解析:这是一道涉及容斥关系(本书后面会有专题讲解)的比例问题。 根据已知 大号白=10件,因为大号共50件,所以,大号蓝=40件; 大号蓝=40件,因为蓝色共75件,所以,小号蓝=35件;

此题可以用另一思路进行解析(多进行这样的思维训练,有助于提升解题能力) 大号白=10件,因为白色共25件,所以,小号白=15件; 小号白=15件,因为小号共50件,所以,小号蓝=35件; 所以,答案为C。

行测数学运算经典题型总结16

例5 某企业发奖金是根据利润提成的,利润低于或等于10万元时可提成10%;低于或等于20万元时,高于10万元的部分按7.5%提成;高于20万元时,高于20万元的部分按5%提成。当利润为40万元时,应发放奖金多少万元?

A.2 B.2.75 C.3 D.4.5 (2003年中央A类真题) 解析:这是一个种需要读懂内容的题型。根据要求进行列式即可。 奖金应为 10×10%+(20-10)×7.5%+(40-20)×5%=2.75 所以,答案为B。

例6 某企业去年的销售收入为1000万元,成本分生产成本500万元和广告费200万元两个部分。若年利润必须按P%纳税,年广告费超出年销售收入2%的部分也必须按P%纳税,其它不纳税,且已知该企业去年共纳税120万元,则税率P%为

A.40% B.25% C.12% D.10% (2004年江苏真题) 解析:选用方程法。根据题意列式如下:

(1000-500-200)×P%+(200-1000×2%)×P%=120 即 480×P%=120

P%=25% 所以,答案为B。

例 7 甲乙两名工人8小时共加736个零件,甲加工的速度比乙加工的速度快30%,问乙每小时加工多少个零件?

A.30个 B.35个 C.40个 D.45个 (2002年A类真题)

解析:选用方程法。设乙每小时加工X个零件,则甲每小时加工1.3X个零件,并可列方程如下: (1+1.3X)×8=736

X=40 所以,选择C。

例 8 已知甲的12%为13,乙的13%为14,丙的14%为15,丁的15%为16,则甲、乙、丙、丁4个数中最大的数是:

A.甲 B.乙 C.丙 D.丁 (2001年中央真题)

解析:显然甲=13/12%;乙=14/13%;丙=15/14%;丁=16/15%,显然最大与最小就在甲、乙之间,所以比较甲和乙的大小即可,甲/乙=13/12%/16/15%>1,

行测数学运算经典题型总结17

所以,甲>乙>丙>丁,选择A。

例 10 某储户于1999年1月1 日存人银行60000元,年利率为2.00%,存款到期日即2000年1月1 日将存款全部取出,国家规定凡1999年11月1日后孳生的利息收入应缴纳利息税,税率为20%,则该储户实际提取本金合计为

A.61 200元 B.61 160元 C.61 000元 D.60 040元

解析,如不考虑利息税,则1999年1月1 日存款到期日即2000年1月1可得利息为60000×2%=1200,也即100元/月,但实际上从1999年11月1日后要收20%利息税,也即只有2个月的利息收入要交税,税额=200×20%=40元

所以,提取总额为60000+1200-40=61160,正确答案为B。

十五. 最小公倍数和最小公约数问题

1.关键提示:

最小公倍数与最大公约数的题一般不难,但一定要细致审题,千万不要粗心。另外这类题往往和日期(星期几)问题联系在一起,要学会求余。 2.核心定义:

(1)最大公约数:如果一个自然数a能被自然数b整除,则称a为b的倍数,b为a的约数。几个自然数公有的约数,叫做这几个自然数的公约数。公约数中最大的一个公约数,称为这几个自然数的最大公约数。 (2)最小公倍数:如果一个自然数a能被自然数b整除,则称a为b的倍数,b为a的约数。几个自然数公有的倍数,叫做这几个自然数的公倍数.公倍数中最小的一个大于零的公倍数,叫这几个数的最小公倍数。 例题1:甲每5天进城一次,乙每9天进城一次,丙每12天进城一次,某天三人在城里相遇,那么下次相遇至少要:

A.60天 B.180天 C.540天 D.1620天 (2003年浙江真题)

解析:下次相遇要多少天,也即求5,9,12的最小公倍数,可用代入法,也可直接求。显然5,9,12的最小公倍数为5×3×3×4=180。 所以,答案为B。

例题2:三位采购员定期去某商店,小王每隔9天去一次,大刘每隔11天去一次,老杨每隔7天去一次,三人星期二第一次在商店相会,下次相会是星期几? A.星期一 B.星期二 C.星期三 D.星期四

解析:此题乍看上去是求9,11,7的最小公倍数的问题,但这里有一个关键词,即“每隔”,“每隔9天”也即“每10天”,所以此题实际上是求10,12,8的最小公倍数。10,12,8的最小公倍数为5×2×2×3×2=120。120÷7=17余1,

所以,下一次相会则是在星期三,选择C。

行测数学运算经典题型总结18

例题3:赛马场的跑马道600米长,现有甲、乙、丙三匹马,甲1分钟跑2圈,乙1分钟跑3圈,丙1分钟跑4圈。如果这三匹马并排在起跑线上,同时往一个方向跑,请问经过几分钟,这三匹马自出发后第一次并排在起跑线上?( )

A.1/2 B.1 C.6 D.12

解析:此题是一道有迷惑性的题,“1分钟跑2圈”和“2分钟跑1圈”是不同概念,不要等同于去求最小公倍数的题。显然1分钟之后,无论甲、乙、丙跑几圈都回到了起跑线上。 所以,答案为B。

行测数学运算经典题型总结19

行测数学运算题库 

解决好比例问题,关键要从两点入手:第一,“和谁比”;第二,“增加或下降多少”。例1b比a增加了20%,则b是a的多少?a又是b的多少呢?解析:可根据方程的思想列式得a×(1+20%)=b,所以b是a的1.2倍。A/b=1/1.2=5/6,所以a是b的5/6。例2养鱼塘里养了一批鱼,第一次捕上来200尾,做好标
推荐度:
点击下载文档文档为doc格式
3mzln4ibh5371qz5cnjx
领取福利

微信扫码领取福利

微信扫码分享