第3章
3—1 何谓速度瞬心相对瞬心与绝对瞬心有何异同点 答:参考教材30~31页。
3—2 何谓三心定理何种情况下的瞬心需用三心定理来确定 答:参考教材31页。
3-3试求图示各机构在图示位置时全部瞬心的位置(用符号P,,直接标注在图上) (a)
(b)
答:
答:
(d)
(10分)
(10分)
3-4标出图示的齿轮一连杆组合机构中所有瞬心,并用瞬心法求齿轮1与齿轮3的传动比ω1/ω3。
(2分) 答:1)瞬新的数目:
K=N(N-1)/2=6(6-1)/2=15
2)为求ω1/ω3需求3个瞬心P16、P36、P13的位置
3)
ω1/ω3= P36P13/P16P13=DK/AK
由构件1、3在K点的速度方向相同,可知ω3与ω1同向。
3-6在图示的四杆机构中,LAB=60mm,LCD=90mm,LAD=LBC=120mm, ω2=10rad/s,试用瞬心法求: 1)当φ=165°时,点的速度vc;
2)当φ=165°时,构件3的BC线上速度最小的一点E的位置及速度的大小; 3)当VC=0时,φ角之值(有两个解)。
解:1)以选定的比例尺μ机械运动简图(图b) 2)求vc定出瞬心p12的位置(图b)
因p13为构件3的绝对瞬心,则有 ω3=vB/lBp13=ω2lAB/μ=10××78=(rad/s) vc=μc p13ω3=×52×=(m/s)
(3分) 3)定出构件3的BC线上速度最小的点E的位置,因BC线上速度最小的点必与p13点的距离最近,故丛p13引BC线的垂线交于点E,由图可得 vE=μω3=××=(m/s)
4)定出vc=0时机构的两个位置(图c)量出
φ1=° φ2=°
(3分)
3-8机构中,设已知构件的尺寸及点B的速度vB(即速度矢量pb),试作出 各机构在图示位置时的速度多边形。
答:
(10分) (b)
答:
答:
机械原理课后答案第3章



