第四单元 圆
一、.圆的特征
1、圆是平面内封闭曲线围成的平面图形,. 2、圆的特征:外形美观,易滚动。
3、圆心o:圆中心的点叫做圆心.圆心一般用字母O表示.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心(o)。
半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。把圆规两脚分开,两脚之间的距离就是圆的半径。
直径d: 通过圆心且两端都在圆上的线段叫做直径。直径是圆内最长的线段。 同圆或等圆内:d=2r 或 r=d÷2=1d=d
22圆心确定圆的位置,半径确定圆的大小。
4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。 同心圆:圆心重合、半径不等的两个圆叫做同心圆。
5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。
有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角 有二条对称轴的图形:长方形 有三条对称轴的图形:等边三角形 有四条对称轴的图形:正方形 有无条对称轴的图形:圆,圆环
11
6、画圆
(1)圆规两脚间的距离是圆的半径。 (2)画圆步骤:定半径、定圆心、旋转一周。
二、圆的周长:围成圆的曲线的长度叫做圆的周长,周长用字母C表示。 1、圆的周长总是直径的三倍多一些。
2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。 即:圆周率π=周长=周长÷直径≈3.14
直径所以,圆的周长(c)=直径(d)×圆周率(π) ——周长公式: c=πd, c=2πr d=c÷? r=c÷?÷2
注:圆周率π是一个无限不循环小数,3.14是近似值。世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。 如果r1∶r2∶r3=d1∶d2∶d3=c1∶c2∶c3
4、半圆周长=圆周长一半+直径=1×2πr=πr+d
2圆周长的一半=?r 三、圆的面积s 1、圆面积公式的推导
如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。
12
圆的半径 = 长方形的宽 圆的周长的一半 = 长方形的长 长方形面积 = 长 ×宽
所以:圆的面积 = 长方形的面积 = 长 ×宽 = 圆的周长的一半(πr)×圆的半径(r)
S圆 = πr × r
S圆 = πr×r = πr2
2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小。 周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。
3、圆面积的变化的规律:半径扩大多少倍直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。 如果: r1∶r2∶r3=d1∶d2∶d3=c1∶c2∶c3
则:s1:s2:s3=r1:r2:r3222
在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小以上倍数的平方倍。
例如:在同一个圆里,半径扩大4倍,那么直径和周长就都扩大4倍,而面积扩大16倍。
13
4一个环形,外圆的半径是R,内圆的半径是r, 它的面积是S=?R2-?r2 或 S=?(R2-r2)。 5、半圆面积=圆的面积?2 公式为:S=?r2?2 6、常用数据
π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7
7当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小
第五单元、百分数
一、百分数的意义:表示一个数是另一个数的百分之几。
注:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比,所以,百分数又叫百分比或百分率,百分数不能带单位。 1、百分数和分数的区别和联系:
(1)联系:都可以用来表示两个量的倍比关系。
(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。 百分数的分子可以是小数,分数的分子只以是整数。
注:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的。“%”的两个0要小写,不要与百分数前面的数混淆。一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70、80%,出油率在30、40%。
14
2、小数、分数、百分数之间的互化
(1)百分数化小数:小数点向左移动两位,去掉“%”。 (2)小数化百分数:小数点向右移动两位,添上“%”。
(3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。 (4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。
(5)小数 化 分数:把小数成分母是10、100、1000等的分数再化简。 (6)分数 化 小数:分子除以分母。 二、百分数应用题
1、 求常见的百分率 如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几
2、 求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。 求甲比乙多百分之几 (甲-乙)÷乙 增加百分之几=增加的部分÷单位1 求乙比甲少百分之几 (甲-乙)÷甲 减少百分之几=减少的部分÷单位1 3、 求一个数的百分之几是多少 一个数(单位“1”) ×百分率
4、 已知一个数的百分之几是多少,求这个数 部分量÷百分率=一个数(单位“1”) 5、 折扣 折扣、打折的意义:几折就是十分之几也就是百分之几十
成折扣 数 八八折 成
几分之几 十分之八 百分之几 百分之小通数 用 0.8 八十 15