2024年四川省宜宾市中考数学试卷
一、选择题:(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在答题卡对成题目上.(注意:在试题卷上作答无效)
1.(3分)3的相反数是( ) A. B.3
C.﹣3 D.±
2.(3分)我国首艘国产航母于2024年4月26日正式下水,排水量约为65000吨,将65000用科学记数法表示为( ) A.6.5×10 B.6.5×10
﹣4
4
C.﹣6.5×10 D.65×10
44
3.(3分)一个立体图形的三视图如图所示,则该立体图形是( )
A.圆柱 B.圆锥 C.长方体 D.球
2
4.(3分)一元二次方程x﹣2x=0的两根分别为x1和x2,则x1x2为( ) A.﹣2 B.1
C.2
D.0
5.(3分)在?ABCD中,若∠BAD与∠CDA的角平分线交于点E,则△AED的形状是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定
6.(3分)某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2024“竹文化”旅游收入达到2.88亿元,据此估计该市2024年、2024年“竹文化”旅游收入的年平均增长率约为( ) A.2% B.4.4%
C.20% D.44%
7.(3分)如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于( )
A.2 B.3 C. D.
8.(3分)在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为( )
A.
B. C.34 D.10
二、填空题:(本大题共8小题,每小题3分,共24分)请把答案直接填在答题卡对应题中横线上(注意:在试题卷上作答无效)
9.(3分)分解因式:2a3b﹣4a2b2+2ab3= .
10.(3分)不等式组1<x﹣2≤2的所有整数解的和为 .
11.(3分)某校拟招聘一名优秀数学教师,现有甲、乙、丙三名教师入围,三名教师师笔试、面试成绩如右表所示,综合成绩按照笔试占60%、面试占40%进行计算,学校录取综合成绩得分最高者,则被录取教师的综合成绩为分 . 教师 成绩 笔试 面试 80分 76分 82分 74分 78分 78分 甲 乙 丙 12.(3分)已知点A是直线y=x+1上一点,其横坐标为﹣,若点B与点A关于y轴对称,则点B的坐标为 .
13.(3分)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,
即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O的半径为1,若用圆O的外切正六边形的面积来近似估计圆O的面积,则S= .(结果保留根号)
14.(3分)已知:点P(m,n)在直线y=﹣x+2上,也在双曲线y=﹣上,则m2+n2的值为 15.(3分)如图,AB是半圆的直径,AC是一条弦,D是AC的中点,DE⊥AB于点E且DE交AC于点F,DB交AC于点G,若
=,则
= .
16.(3分)如图,在矩形ABCD中,AB=3,CB=2,点E为线段AB上的动点,将△CBE沿CE折叠,使点B落在矩形内点F处,下列结论正确的是 (写出所有正确结论的序号) ①当E为线段AB中点时,AF∥CE; ②当E为线段AB中点时,AF=; ③当A、F、C三点共线时,AE=
;
④当A、F、C三点共线时,△CEF≌△AEF.
三、解答题:(本大题共8个题,共72分)解答应写出文字说明,证明过程或演算步骤. 17.(10分)(1)计算:sin30°+(2024﹣(2)化简:(1﹣
)÷
.
)0﹣2﹣1+|﹣4|;
18.(6分)如图,已知∠1=∠2,∠B=∠D,求证:CB=CD.
19.(8分)某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A、B、C、D、E、F)六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.
请根据以上信息,完成下列问题: (1)该班共有学生人;
(2)请将条形统计图补充完整;
(3)该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率. 20.(8分)我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.
21.(8分)某游乐场一转角滑梯如图所示,滑梯立柱AB、CD均垂直于地面,点E在线段BD上,在C点测得点A的仰角为30°,点E的俯角也为30°,测得B、E间距离为10米,立柱AB高30米.求立柱CD的高(结果保留根号)
22.(10分)如图,已知反比例函数y=(m≠0)的图象经过点(1,4),一次函数y=﹣x+b的图象经过反比例函数图象上的点Q(﹣4,n). (1)求反比例函数与一次函数的表达式;
(2)一次函数的图象分别与x轴、y轴交于A、B两点,与反比例函数图象的另一个交点为P点,连结OP、OQ,求△OPQ的面积.
23.(10分)如图,AB为圆O的直径,C为圆O上一点,D为BC延长线一点,且BC=CD,CE⊥AD于点E.
(1)求证:直线EC为圆O的切线;
(2)设BE与圆O交于点F,AF的延长线与CE交于点P,已知∠PCF=∠CBF,PC=5,PF=4,求sin∠PEF的值.
24.(12分)在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1. (1)求抛物线的解析式;