好文档 - 专业文书写作范文服务资料分享网站

DSP的FIR设计C语言编写

天下 分享 时间: 加入收藏 我要投稿 点赞

低通滤波器设计。 本设计中使用的信号为

信息信号: signal=sin(2*pi*sl*n*T) 高频噪声1:noise1=*sin(2*pi*ns1*n*T) 高频噪声2:noise2=*sin(2*pi*ns2*n*T) 混合信号: x=(signal+noise1+noise2)

其中sl=500Hz,ns1=3000Hz,ns2=8000Hz,T=1/20000。混合信号波形为滤波器输入信号波形,信息信号波形为输出信号波形,滤波器的效果为滤除两个高频噪声。

一、FIR滤波器基本理论

(1)FIR滤波器的特点

数字滤波器的功能,就是把输入序列通过一定的运算变换成输出序列。它的实现方法有很多,其中比较常用到的是无限长脉冲响应滤波器 IIR和有限长脉冲响应滤波器FIR两种。

在计算量相等的情况下,IIR数字滤波器比FIR滤波器的幅频特性优越,频率选择性也好。但是,它有着致命的缺点,其相位特性不好控制。它的相位特性

f(?) ?argH(ej?)是使频率产生严重的非线性的原因。但是在图像处理、数据传

输等波形传递系统中都越来越多的要求信道具有线性的相位特性。在这方面 FIR滤波器具有它独特的优点,设FIR滤波器单位脉冲响应h(n)长度为N,其系统函数H(z)为

H(z)??h(n)z?n

H(z)是z的(N-1)次多项式,它在z平面上有(N-1)个零点,原点z=0是(N-1)阶重极点。因此,H(z)永远稳定,它可以在幅度特性随意设计的同时,保证精确、严格的线性相位。

(2)FIR滤波器的基本结构

数字滤波是将输入的信号序列,按规定的算法进行处理,从而得到所期望的输出序列,FIR滤波器的差分方程为:

?1N?1n?0y(n)??akx(n?k)

k?0N?1对上式进行Z变换得到FIR滤波器的传递函数为:

Y?z?N?1?kH?z????bkz

X?z?i?0由上式可以看出,H(z)是z?1的N-1次多项式,它在z平面内有N-1个零点,同时在原点处有N-1个重极点。N阶滤波器通常采用N个延迟单元、N个加法器与N+1

个乘法器,取图中(a)、(b)两种结构。

图 FIR滤波器的一般结构

因为FIR滤波器的单位抽样响应是有限长的,所以它永远是稳定的。另外,若对 h(n)提出一些约束条件,那么可以很容易地使 H(z)具有线性相位,这在信号处理的很多领域是非常重要的。FIR滤波器的设计任务,是要决定一个转移函数H(z),使它的频率响应满足给定的要求。这里所说的要求,除了通带频率?p、阻带频率及两个带上的最大和最小衰减?p和?s外,很重要的一条是保证H(z)具有线性相位。 (3)Chebyshev逼近法

窗函数法和频率采样法设计出的滤波器的频率特性都是在不同意义上对所给理想频率特性Hdejw的逼近。由数值逼近理论可知,对某个函数f(x)的逼近一般有以下三种方法:

插值法(Interpolating Way)

最小平方逼近法(Least Square Approaching Way) 一致逼近法(Consistent Approaching Way)

切比雪夫最佳一致逼近的基本思想是,对于给定区间[a,b]上的连续函数

f?x?,在所有n次多项式的集合?n中,寻找一个多项式 p(x),使它在[a,b]上

??对f?x?的偏差和其它一切属于?n的多项式 p(x)对f(x)的偏差相比是最小的,即

??x??f?x??min?max?p?x??f?x??? maxp切比雪夫逼近理论,这样的多项式是存在的,且是唯一的,并指出了构造这种最佳一致逼近多项式的方法,就是有名的“交错点组定理”。

切比雪夫逼近理论解决了p(x)的存在性、唯一性和如何构造等问题。、、 等人应用切比雪夫逼近理论提出了一种设计FIR滤波器的计算机辅助算法。这种算法由于是在一致意义上对Hdejw作最佳逼近,因而获得了较好的通带和阻带性能,并能准确地指定通带和阻带的边缘。但它的效率依赖于初始极值频率点的估计,且通带和阻带内波纹数较多,这是Chebyshev方法的两个主要缺点。

??三、FIR滤波器的MATLAB实现

MATLAB辅助DSP 实现FIR ,其总体过程为在DSP中编写处理程序,在MATLAB中利用滤波器设计、分析工具( FDATOOL) ,根据指定的滤波器性能快速设计一个FIR ,再把滤波器系数以头文件形式导入CCS 中,头文件中MATLAB 辅助DSP 实现

FIR 数字滤波器含滤波器阶数和系数数组,在MATLAB中调试、运行DSP 程序并显示、分析处理后的数据。使用该方法,便于采用汇编语言来实现程序。头文件名不变,当MATLAB中设计的滤波器系数改变时,相应头文件中系数也改变,方便程序调试、仿真。

(1)输入信号的产生

首先利用Matlab产生导入CCS的dat文件,具体实现如下代码所示 sl=500; %有效信号 ns1=3000; %高频噪声 ns2=8000; %高频噪声 fs=20000; %采样频率 N=1000; T=1/fs; n=0:N;

signal=sin(2*pi*sl*n*T); noise1=*sin(2*pi*ns1*n*T); noise2=*sin(2*pi*ns2*n*T);

x=(signal+noise1+noise2);%待滤波信号 figure(1) plot(x) figure(2)

y=abs(fft(x));%待滤波频谱 df=n*(fs/N); plot(df,y) figure(3) plot(signal) figure(4)

ysignal=abs(fft(signal));%滤波后频谱 df=n*(fs/N);

plot(df,ysignal) %滤波数据导出

xout=x/max(x); %归一化 xto_css=round(32767*xout);%数据取整 xoutcss=xto_css;

fid=fopen('','w'); %打开文件

fprintf(fid,'1651 1 0 0 0\\n');%输出文件头 fprintf(fid,'%d\\n',xoutcss); %输出 fclose(fid);

产生的时域波形如图所示:

图 输入信号波形

频谱如图所示:

图 输入频谱

经过滤波器后的预期时域波形如图:

图 输出时域波形

频谱如图所示

图 输出频谱

(2)滤波器的设计

MATLAB集成了一套功能强大的滤波器设计工具FDATool(Filter Design & Analysis Tool),可以完成多种滤波器的设计、分析和性能评估。

a.打开Filter Design & Analysis Tool

单击MATLAB主窗口下方的“Start”按钮,选择菜单“ToolBox” →“Filter Design” →“Filter Design & Analysis Tool(FDATool)”命令,打开FDATool,如图所示。

图 fadatool的启动

b.产生滤波器 阶数为81阶,这里应填80,比阶数少1。窗函数选择切比雪夫型(chebyshev),采样频率为20000Hz,通带截止频率为750Hz。

图 滤波器的幅频特性

图 滤波器的相位特性

c.产生滤波器系数和头文件

图 滤波器系数

图 头文件的产生

最后将产生的头文件中的滤波器系数数组放入编写好的滤波器函数中,并在进行CCS中进行调试与测试。

四、FIR滤波器的Simulink仿真

通过Matlab的 FDATOOL设计滤波器后,为了确认该滤波器是否有效,现通过simulink进行建模仿真观察该滤波器是否有效。

把三个信号通过加法器相加后,再通过FDATOOL设计的滤波器即可。注意此处设计的是数字滤波器,需要把三个输入信号数字化。

具体仿真模型建立如下:

分别观察滤波前后的时域波形图

图 滤波前时域波形 图 滤波后时域波形

五、FIR滤波器的DSP实现

(1)DSP中滤波器的z算法实现

FIR滤波器的输出表达式为

y(n)??h(i)x(n?i)?n?0N?1N/2?1n?0?1?h(i)s(n?i)

式中,为滤波器系数;x(n)表示滤波器在n时刻的输入;y(n)为n时刻的输出。

它的基本算法是一种乘法-累加运算,即不断地输入样本x(n),经过延时后,再进行乘法-累加,最后输出滤波结果y(n)。

1)线性缓冲区法:线性缓冲区法又称延迟线法,其特点: (a)对于N级的FIR滤波器,在数据存储器中开辟一个N单元的缓冲区(滑窗),用来存放最新的N个输入样本;

(b)从最老样本开始取数,每取一个样本后,将此样本向下移位; (c)读完最后一个样本后,输入最新样本存入缓冲区的顶部。 2)循环缓冲区法:循环缓冲区法的特点如下: (a)对于N级FIR滤波器,在数据存储器中开辟一个N单元的缓冲区(滑窗),用来存放最新的N个输入样本;

(b)从最新样本开始取数;

(c)读完最后一个样本(最老样本)后,输入最新样本来代替最老样本,而其他数据位置不变;

(d)用片内BK(循环缓冲区长度)寄存器对缓冲区进行间接寻址,使循环缓冲区地址首尾相邻。本次设计的FIR滤波器所采用的就是循环缓冲区法。 (2)C语言实现FIR

采用C语言算法在DSP平台上实现了FIR低通数字滤波器,C语言算法相比于汇编算法可移植性很强。这里是在TMS320VC5510DSP为平台编写的C语言算法, 此算法可以稍加改动用在其他DSP芯片上, 而汇编算法则不然。这种方法具有以下优点:

(a) 程序的入口和出口由C语言自动管理,不必手工编写汇编程序实现。 (b) 程序结构清晰,可读性强。

(c) 程序调试方便。由于C程序中的变量全部由C语言来定义,因此采用C源码调试器可以方便地观察C语言变量。

(d) 可移植性较强,通用性较好。

DSP的FIR设计C语言编写

低通滤波器设计。本设计中使用的信号为信息信号:signal=sin(2*pi*sl*n*T)高频噪声1:noise1=*sin(2*pi*ns1*n*T)高频噪声2:noise2=*sin(2*pi*ns2*n*T)混合信号:x=(signal+noise1+noise2)其中sl=500Hz,ns1=3000Hz,ns2=8000Hz,T=1/2
推荐度:
点击下载文档文档为doc格式
3k4nw3j8ej83hrt8bf1m52amw9lhr3008a5
领取福利

微信扫码领取福利

微信扫码分享