数据仓库作为决策支持系统(DSS)的基础,具有面向主题的、集成的、不可更新的、随时间不断变化的特性。这些特点说明了数据仓库从数据组织到数据处理,都与原来的数据库有很大的区别,这也就需要在数据仓库系统设计时寻求一个适合于数据仓库设计的方法。在一般的系统开发规划中,首先需要确定系统的功能,这些系统的功能一般是通过对用户的需求分析得到的。从数据仓库的应用角度来看,DSS分析员一般是企业中的中高层管理人员,他们对决策支持的需求不能预先做出规范的说明,只能给设计人员一个抽象地描述。这就需要设计人员在与用户不断的交流沟通中,将系统的需求逐步明确,并加以完善。因此数据仓库的开发规划过程实际上是一个用户和设计人员对其不断了解、熟悉和完善的过程。
数据仓库作为决策支持系统(DSS)的基础,具有面向主题的、集成的、不可更新的、
随时间不断变化的特性。这些特点说明了数据仓库从数据组织到数据处理,都与原来的数据库有很大的区别,这也就需要在数据仓库系统设计时寻求一个适合于数据仓库设计的方法。在一般的系统开发规划中,首先需要确定系统的功能,这些系统的功能一般是通过对用户的需求分析得到的。从数据仓库的应用角度来看,DSS分析员一般是企业中的中高层管理人员,他们对决策支持的需求不能预先做出规范的说明,只能给设计人员一个抽象地描述。这就需要设计人员在与用户不断的交流沟通中,将系统的需求逐步明确,并加以完善。因此数据仓库的开发规划过程实际上是一个用户和设计人员对其不断了解、熟悉和完善的过程。
数据仓库的开发应用规划是开发数据仓库的首要任务。只有制定了正确的数据仓库规划,才能使组织主要力量有序地实现数据仓库的开发应用。在数据仓库规划中一般需要经历这样几个过程:选择实现策略、确定数据仓库的开发目标和实现范围、选择数据仓库体系结构、建立商业和项目规划预算。
1 / 8
当数据仓库规划完成后,需要编制相应的数据仓库规划说明书,说明数据仓库与企业战略的关系,以及与企业急需处理的、范围相对有限的开发机会,重点支持的职能部门和今后数据仓库开发工作的建议,实际使用方案和开发预算,作为数据仓库实际开发的依据。
1、选择数据仓库实现策略
数据仓库的开发策略主要有自顶向下、自底向上和这两种策略的联合使用。自顶向下策略在实际应用中比较困难,因为数据仓库的功能是一种决策支持功能。这种功能在企业战略的应用范围中常常是很难确定的,因为数据仓库的应用机会往往超出企业当前的实际业务范围,而且在开发前就确定目标,会在实现预定目标后就不再追求新的应用,是数据仓库丧失更有战略意义的应用。由于该策略在开发前就可以给出数据仓库的实现范围,能够清楚地向决策者和企业描述系统的收益情况和实现目标,因此是一种有效的数据仓库开发策略。该方法使用时需要开发人员具有丰富的自顶向下开发系统的经验,企业决策层和管理人员完全知道数据仓库的预定目标并且了解数据仓库能够在那些决策中发挥作用。
自底向上策略一般从某个数据仓库原型开始,选择一些特定的为企业管理人员所熟知的管理问题作为数据仓库开发的对象,在此基础上进行数据仓库的开发。因此,该策略常常用于一个数据集市、一个经理系统或一个部门的数据仓库开发。该策略的优点在于企业能够以较小的投入,获得较高的数据仓库应用收益。在开发过程中,人员投入较少,也容易获得成效。当然,如果某个项目的开发失败可能造成企业整个数据仓库系统开发的延迟。该策略一般用于企业洗碗对数据仓库的技术进行评价,以确定该技术的应用方式、地点和时间,或希望了解实现和运行数据仓库所需要的各种费用,或在数据仓库的应用目标并不是很明确时,数据仓库对决策过程影响不是很明确时使用。
在自顶向下的开发策略中可以采用结构化或面向对象的方法,按照数据仓库的规划、需求确定、系统分析、系统设计、系统集成、系统测试和系统试运行的阶段完成数据仓库的开发。而在自底向上的开发中,则可以采用螺旋式的原型开发方法,使用户可以根据新的需求对试运行
2 / 8
的系统进行修改。螺旋式的原型开发方法要求在较短的时间内快速的生成可以不断增加功能的数据仓库系统,这种开发方法主要适合于这样一些场合:在企业的市场动向和需求无法预测,市场的时机是实现产品的重要组成部分,不断地改进对与企业的市场调节是必需的;持久的竞争优势来自连续不断地改进,系统地改进是基于用户在使用中的不断发现。
自顶向下和自底向上策略的联合使用具有两种策略的优点,既能快速的完成数据仓库的开发与应用,还可建立具有长远价值的数据仓库方案。但在实践中往往难以操作,通常需要能够建立、应用和维护企业模型、数据模型和技术结构的、具有丰富经验的开发人员,能够熟练的从具体(如业务系统中的元数据)转移到抽象(只基于业务性质而不是基于实现系统技术的逻辑模型);企业需要拥有由最终用户和信息系统人员组成的有经验的开发小组,能够清楚地指出数据仓库在企业战略决策支持中的应用。
2、确定数据仓库的开发目标和实现范围
为确定数据仓库的开发目标和实现范围,首先需要对企业管理者等数据仓库用户解释数据仓库在企业管理中的应用和发展趋势,说明企业组织和使用数据来支持跨功能系统的重要性,对企业经营战略的支持,以确定开发目标。在该阶段确认与使用数据仓库有关的业务要求,这些要求应该只支持最主要的业务职能部门,将使用精力集中在收益明显的业务上,使数据仓库的应用立即产生效果,不应该消耗太多的精力在各个业务上同时铺开数据仓库的应用。在确定开发目标和范围以后,应该编制需求文档,作为今后开发数据仓库的依据。
数据仓库开发的首要目标是确定所需要信息的范围,确定用户提供决策帮助时,在主题和指标域需要哪些数据源。这就需要定义:用户需要什么数据?面向主题的数据仓库需要什么样的支持数据?为成功地向用户提交数据,开发人员需要哪些商业知识?哪些背景知识?这就需要定义整体需求,以文件的形式整理现存的记录系统和系统环境,对使用数据仓库中数据的候选应用系统进行标识、排序,构造一个传递模型,确定尺度、事实及时间标记算法,以便从系统中抽取信息且将他们放入数据仓库。通过信息范围确定可为开发人员提供一个良好的分析平台,和用
3 / 8
户一起分析哪些信息是数据仓库需要的,进行商业活动需要什么数据。开发人员可以和用户进一步定义需要,例如数据分级层次、聚合的层次、加载的频率以及需要保持的时间表等。
数据仓库开发的另一个重要目标是确定利用哪些方法和工具访问和导航数据?虽然用户都需要存取并且检索数据仓库的内容,但是所存取的粒度有所不同,有的可能是详细的记录,有的可能是比较概括的记录或十分概括的记录。用户要求的数据概括程度不同,将导致数据仓库的聚集和概括工具的需求不同。数据仓库还有具有一定功能来访问和检索图表、预定义的报表、多维数据、概括性数据和详细记录。用户从数据仓库中获得信息,应该有电子表格、统计分析器和支持多维分析的分析处理器等工具的支持,以解释和分析数据仓库中的内容,产生并且验证不同的市场假设、建议和决策方案。为将决策建议和各种决策方案向用户清楚地表达出来,需要利用报表、图表和图像等强有力的信息表达工具。
数据仓库开发的其他目标,是确定数据仓库内部数据的规模。在数据仓库中不仅包含当前数据,而且包含多年的历史数据。数据的概括程度决定了这些数据压缩和概括的最大限度。如果要让数据仓库提供对历史记录进行决策查询的功能,就必须支持对大量数据的管理。数据的规模不仅直接影响决策查询的时间,而且还将直接影响企业决策的质量。
在数据仓库的开发目标中,还有:根据用户对数据仓库的基本需求,确定数据仓库中数据的含义;确定数据仓库内容的质量,以确定使用、分析和建议的可信级别;哪种类型的数据仓库可以满足最终用户的需求,这些数据仓库应该具有怎样的功能;需要哪些元数据,如何使用数据源中的数据等。
数据仓库的开发目标多种多样,十分复杂,需要开发人员和用户在开发与使用的过程中不断交互完善。因此,在规划中需要确定数据仓库的开发范围。使开发人员能够根据需求和目标的重要性逐步进行,并且在开发中吸取经验教训,为数据仓库在企业中的全部实现提供技术准备。因此,在为数据仓库确定总体开发方向和目标以后,就必须确定一个有限的能够很快体现数据仓库效益的使用范围。在考虑数据仓库苦的应用范围时,主要从使用部门的数量和类型、数据源的
4 / 8
数量、企业模型的子集、预算分配以及开发项目所需的时间等角度分析。在分析这些因素时,可从用户的角度和技术的角度两方面进行。
从用户的角度应该分析哪些部门最先使用数据仓库?是哪些人员为了什么目的使用数据仓库?以及数据仓库首先要满足哪些决策查询?因为这些决策查询往往确定了关于数据维数、报表的种类,这些因素都将确定数据仓库定义时所需要的数量关系。查询的格式越具体,越容易提供数据仓库的维数、聚集和概括的规划说明。
从技术角度分析,应该确定数据仓库中元数据库的规模,数据仓库的元数据库是存储数据仓库中数据定义的模型。数据定义存储在仓库管理器的目录中,可以作为所有查询和报表工具构造和查询数据仓库的依据。元数据库的规模直接表示了数据仓库中必须管理的数据规模。通过对元数据库规模的管理,实际上就确定了数据仓库中所需要管理的数据规模。
3、数据仓库的结构选择
数据仓库的结构可以进行灵活的选择,可将组织所使用的各种平台进行恰当的分割,把数据源、数据仓库和最终用户使用的工作站分割开来进行恰当的设计。
(1)数据仓库的应用结构
基于业务处理系统的数据仓库
在这种结构中,将运作的数据用于无需修改数据的只读应用程序中。具有这种结构的数据仓库元数据库是一种虚库,而不是数据仓库自身的元数据。在数据仓库元数据库的直接指导下,对数据仓库的查询就是简单的从数据库中抽取数据。
单纯数据仓库
利用在数据仓库中的数据源净化、集成、概括和集成等操作,将数据源从业务处理系统中传输
5 / 8
数据仓库的规划构建策略



