好文档 - 专业文书写作范文服务资料分享网站

多传感器信息融合在滚动轴承故障诊断中的应用

天下 分享 时间: 加入收藏 我要投稿 点赞

多传感器信息融合在滚动轴承故障诊断中的应用

马文龙;吕建新;吴虎胜;黄炯龙

【期刊名称】《传感器与微系统》 【年(卷),期】2013(032)007

【摘要】针对单一传感器在滚动轴承故障诊断中存在故障识别率不高,敏感特征不易提取,诊断系统可靠性差等问题,提出了采用多传感器特征层、决策层信息融合的故障诊断方法.对振动信号采用经验模式分解(EMD)、小波包和局部均值分解(LMD)方法进行处理并提取特征向量,构建支持向量机分类器.经过特征层交叉诊断,得到初步诊断结果,在决策层采用D-S证据理论进行决策融合.试验表明:该方法可以提高滚动轴承故障识别率.%Aiming at problems of low recognition rate,low reliability of diagnosis system and difficulty in extracting sensitive characteristics of single-sensor in rolling bearing fault diagnosis,a fault diagnosis method adopting feature and decision-making level information fusion of multi-sensor is presented.Vibration signals are processed with the methods of empirical mode decomposition

(EMD),wavelet

packet,and

local

mean

decomposition(LMD) method and extract feature vector,establish support vector machine (SVM) classifier.On feature level,the preliminary diagnosis results is gained through crossing diagnosis.On decision-making level,data fusion is carríed out with the D-S theory.Tests show that fault recognition rate of rolling beating can be enhanced with the methods.

多传感器信息融合在滚动轴承故障诊断中的应用

多传感器信息融合在滚动轴承故障诊断中的应用马文龙;吕建新;吴虎胜;黄炯龙【期刊名称】《传感器与微系统》【年(卷),期】2013(032)007【摘要】针对单一传感器在滚动轴承故障诊断中存在故障识别率不高,敏感特征不易提取,诊断系统可靠性差等问题,提出了采用多传感器特征层、决策层信息融合的故障诊断方法.对振动信号采用经验模式分解(
推荐度:
点击下载文档文档为doc格式
3icp05kh9k6m3qp9xkwe9ersa9pruq00xc5
领取福利

微信扫码领取福利

微信扫码分享