好文档 - 专业文书写作范文服务资料分享网站

16数学练习试卷-2010潍坊市中考数学试题(含答案)

天下 分享 时间: 加入收藏 我要投稿 点赞

2010年5月21日至2010年10月31日期间,平均每天参观上海世博会的人数约为40.21万人次. 8分

19.(本小题满分9分) (1)证明:∵AC?CD,∴弧AC与弧CD相等,∴?ABC??CBD, 又∵OC?OB,∴?OCB??OBC,∴?OCB??CBD, ∴OC∥BD. ································································································ 4分 (2)解:∵OC∥BD,不妨设平行线OC与BD间的距离为h, 又S1△OBC?2OC?h,S1△DBC?2BD?h 因为BC将四边形OBDC分成面积相等的两个三角形,即S△OBC?S△DBC

∴OC?BD, ································································································ 7分

∴四边形OBDC为平行四边形. 又∵OC?OB,∴四边形OBDC为菱形. ····························································· 9分 20.(本小题满分9分) 解:设参加活动的高中学生为x人,则初中学生为?x?4?人,根据题意,得:

6x?10?x?4?≤210 ·

··················································································· 2分 ∴16x≤170 ∴x≤10.625

所以,参加活动的高中学生最多为10人. ···························································· 5分 设本次活动植树y棵,则y关于高中学生数x的函数关系式为

y?5x?3?x?4?即:y?8x?12 ···································································· 7分 ∴y的值随x的值增大而增大. ∵参加活动的高中学生最多为10人, ∴当x?10时,y最大?8?10?12?92,

答:应安排高中学生10人,初中学生14人,最多植树92棵. ································· 9分

21.(本题满分10分) 解:设灯柱BC的长为h米,过点A作AH?CD于点

B做BE?AH于点E, ∴四边形BCHE为矩形, ∵?ABC?120°,∴?ABE?30°, 又∵?BAD??BCD?90°,∴?ADC?60°, 在Rt△AEB中,

∴AE?ABsin30°?1, BE?ABcos30°?3, ··································· 4分

∴CH?3,又CD?12,∴DH?12-3, 在Rt△AHD中,

tan?ADH?AHHD?h?112?3?3, ·································································· 8分 H,过点解得,h?123?4(米)

∴灯柱BC的高为123?4米. ······································································ 10分 22.(本题满分10分) 解:(1)设矩形广场四角的小正方形的边长为x米,根据题意,得:

??4x2??100?2x??80?2x??5200

整理,得:x?45x?350?0 ········································································· 3分 解之,得:x1?35,x2?10. 经检验,x1?35,x2?10均适合题意.

所以,要使铺白色地面砖的面积为5200平方米,则矩形广场四角的小正方形的边长为35米或10米. 5分 (2)设铺矩形广场地面的总费用为y元,广场四角的小正方形的边长为x米,则,

2y?30??4x??100?2x??80?2x???2x?100?2x??2x?80?2x??? ???20??2即:y?80x?3600x?240000

配方得,y?80?x?22.5??199500 ································································ 8分 当x?22.5时,y的值最小,最小值为199500.

所以,当矩形广场四角的小正方形的边长为22.5米时,所铺广场地面的总费用最少,最少费用为199500元. ················································································································· 10分 23.(本小题满分11分)

(1)证明:∵四边形OABC为正方形,∴OC?OA, ∵三角板OEF是等腰直角三角形,∴OE1?OF1

又三角板OEF绕O点逆时针旋转至OE1F1的位置时,?AOE1??COF1

∴△OAE1≌△OCF1. ···················································································· 3分 (2)存在. ···································································································· 4分 ∵OE?OF,

∴过点F与OE平行的直线有且只有一条,并与OF垂直, 又当三角板OEF绕O点逆时针旋转一周时,则点F在以O以OF为半径的圆上, ········································································· 5分 ∴过点F与OF垂直的直线必是圆O的切线,又点C是圆O过点C与圆O相切的直线有且只有2条,不妨设为CF1和

22为圆心,

外一点,

CF2,

此时,E点分别在E1点和E2点,满足

CF1∥OE1,CF2∥OE2,················································································ 7分

当切点F1在第二象限时,点E1在第一象限, 在直角三角形CF1O中,OC?4,OF1?2,

cos?COF1?OF11 ?,OC2,∴?COF1?60°∴?AOE1?60°

∴点E1的横坐标为:xE1?2cos60°?1, 点E1的纵坐标为:yE1?2sin60°?3,

∴点E1的坐标为1,3. ················································································· 9分 当切点F2在第一象限时,点E2在第四象限,

??,?3. 同理可求:点E2的坐标为1综上所述,三角板OEF绕O点逆时针旋转一周,存在两个位置,使得OE∥CF,此时点E的坐标为

??E11,3或E21,?3. ··············································································· 11分

24.(本题满分12分)

解:(1)因为抛物线与x轴交于点A??10,?、B?3,0?两点,设抛物线的函数关系式为: y?a?x?1??x?3?,∵抛物线与y轴交于点C?0, ?3?,∴?3?a?0?1??0?3?, ∴a?1.

所以,抛物线的函数关系式为:y?x?2x?3, ·················································· 2分 又y??x?1??4,

因此,抛物线的顶点坐标为?1 ·································································· 3分 ,?4?.(2)连结EM,∵EA、ED是⊙M,的两条切线,

∴EA?ED,EA?AM,ED?MN,∴△EAM≌△EDM

22????又四边形EAMD的面积为43,∴S△EAM?23,∴又AM?2,∴AE?23.

1 AM·AE?23,2,23或E2?1,?23. ·因此,点E的坐标为E1?1··········································· 5分

当E点在第二象限时,切点D在第一象限. 在直角三角形EAM中,tan?EMA?∴?EMA?60°∴?DMB?60° ,过切点D作DF?AB,垂足为点F,

????EA23??3, AM2,DF?3 ∴MF?1因此,切点D的坐标为2,3. ········································································ 6分

??,23、D2,3的坐标代入得 设直线PD的函数关系式为y?kx?b,将E?1?3k?????3?2k?b?3解之,得? ???b?53?23??k?b?3?所以,直线PD的函数关系式为y??????353x?. ·············································· 7分 33当E点在第三象限时,切点D在第四象限.

同理可求:切点D的坐标为2,-3,直线PD的函数关系式为y?因此,直线PD的函数关系式为

??353x?. 33y??353353x?x?. ·或y?····························································· 8分 3333(3)若四边形EAMD的面积等于△DAN的面积 又S四边形EAMD?2S△EAM,S△DAN?2S△AMD ∴S△AMD?S△EAM

∴E、D两点到x轴的距离相等,

∵PD与⊙M相切,∴点D与点E在x轴同侧, ∴切线PD与x轴平行,

此时切线PD的函数关系式为y?2或y??2.

····································································· 9分

2当y?2时,由y?x?2x?3得,x?1?6;

当y??2时,由y?x?2x?3得,x?1?2. ················································ 11分

22、P21?6,2、P31?2,?2、故满足条件的点P的位置有4个,分别是P 11?6,P41?2,?2.

????????

16数学练习试卷-2010潍坊市中考数学试题(含答案)

2010年5月21日至2010年10月31日期间,平均每天参观上海世博会的人数约为40.21万人次.8分19.(本小题满分9分)(1)证明:∵AC?CD,∴弧AC与弧CD相等,∴?ABC??CBD,又∵OC?OB,∴?OCB??OBC,∴?OCB??CBD,∴OC∥BD.················································
推荐度:
点击下载文档文档为doc格式
3guon48eys7b3ef97wu606i7k4fff900zjx
领取福利

微信扫码领取福利

微信扫码分享