数字信号期末复习
Digital Signal Processing
chapter 2 离散时间信号与系统 ? 认识典型信号,熟悉基本词汇
Unit sample sequence,Unit step sequence,exponential sequence,Sinusoidal sequence,Periodic sequence,Shifting,Folding,addition,multiplication,Linear convolution,Stability/stable,Causality/causal,Difference equation, impulse response
? 正弦序列的周期性 ?
LTI系统因果、稳定的判断
example: Given the impulse response h(n) of a LTI system as (1)h(n)?0.3nu(?n?1), (2)h(n)?0.3nu(n) (3)h(n)?2?nu(?n?1) (4)h(n)?2nu(n) it is a ( causal/not causal, stable/not stable ) system. ? 卷积和计算(convolution): 定义:
yl(n)?x1(n)*x2(n)?m????x(m)x(n?m)12?
掌握不进位相乘法求两个有限长序列的卷积和, 以及有限长序列卷积结果的长度,并掌握与第五章圆周卷积之间的关系
chapter 3 DTFT 基本词汇:frequency response,steady state response,sampling, aliasing,Nyquist rate,time shifting、 frequency shifting、 conjugation、 folding、 symmetry、 convolution、Parseval’s Theorem
? DTFT定义
X(e)?F[x(n)]?jwn????x(n)e???jwn
X(ejw)特点:连续,以2?为周期
? DTFT性质:见教材48页
熟记常用性质,并能利用定义及性质求一些序列的DTFT
11x(n)??(n?2)??(n?2)example: Given
22X(ejw),
then
=________________
Given x(n)?X(ejw), then x(n?2)? , _____?X[ej(w?2)]
? H(ejw)(frequency response)与差分方程(difference equation)之间的互求,利
用H(ejw)?求解系统的稳态响应(steady state response)(参见教材56页example 3.14)
example: Given h(n)?(0.6)nu(n), H(ejw)? , the difference equation is if x(n)?1.2u(n), then the steady state response
yss(n)?_______
? 抽样定理
理解抽样定理的意义,什么是Nyquist rate/frequency?
example:Given a signal(1)x(t)?cos(200t)?sin(600t),(2)x(t)?Sa(300t), determine the Nyquist rate
chapter 4 ZT
基本词汇:ROC,unit circle,zeros, poles,zero-pole plot/zero-pole diagram,right-sided sequence,left-sided sequence,causal sequence,finite duration sequence
two-sided sequence,partial fraction expansion,system function,unit circle ? ZT定义:X(z)?n????x(n)z???n, 收敛域ROC(range of convergence)
? 熟记典型序列的z变换
example: Givenx(n)?2?n?1u(?n?1), thenX(z)=________,ROC is________.
1?0.8z?1掌握ROC情况,如: H(z)?, ROC有哪些情?1?1?1(1?0.5z)(1?2z)(1?1.5z)况?记住收敛域内不能包含极点
? ZT性质(教材84页) ? IZT(z反变换,掌握部分分式展开法求z反变换),参见教材90页example4.7