好文档 - 专业文书写作范文服务资料分享网站

2010中考数学专题复习 - 压轴题(含答案) 

天下 分享 时间: 加入收藏 我要投稿 点赞

阳光家教网 www.ygjj.com 中考(初三复习)数学资料 1??10k2?b2?0?k2?,??2 ?4k?b??3?22??b2??5.1x?5. 21∴直线OP3的函数表达式为y?x

2∴直线CA的函数表达式为y?1?y?x??2?x2?14x?0,即x(x-14)=0. 由??y?1x2?5x?84??x1?0,?x2?14,∴? ?y?0;y?7.?1?2而点O(0,0),∴P3(14,7).

过点P3作P3E⊥x轴于点E,则∣P3E∣=7. 在Rt△OP3E中,由勾股定理,得

OP3?P?72?142?75. 3F?OF22而∣CA∣=∣AB∣=35.

∴在四边形P3OCA中,OP3∥CA,但∣OP3∣≠∣CA∣.

∴点P3(14,7)是符合要求的点. ??1分 综上可知,在(1)中的抛物线上存在点P1(6,-3)、P2(-6,12)、P3(14,7),

使以P、O、C、A为顶点的四边形为梯形. ??1分 (3)由题知,抛物线的开口可能向上,也可能向下.

①当抛物线开口向上时,则此抛物线与y轴的副半轴交与点N. 可设抛物线的函数表达式为y?a(x?2k)(x?5k)(a>0).

即y?ax?3akx?10ak

22349?a(x?k)2?ak2.

24如图,过点M作MG⊥x轴于点G. ∵Q(-2k,0)、R(5k,0)、G(??3?k,0?、N(0,?2?-10ak)、M?2

49?3?k,?ak2?,

4?2?

阳光家教网 www.ygjj.com 中考(初三复习)数学资料 374922ak. ∴QO?2k,QR?7k,OG?k,QG?k,ON?10ak,MG?22411?S?QNR??QR?ON??7k?10ak2?35ak3.

22

111??QO?ON?(ON?GM)?OG??QG?GM222114931749??2k?10ak2??(10ak2?ak2)?k??k?ak2 224222414949?7?)ak3. ?(29?15?3?2882133∴S?QNM:S?QNR?(ak):(35ak)?3:20. ??2分

4②当抛物线开口向下时,则此抛物线与y轴的正半轴交于点N,

同理,可得S?QNM:S?QNR?3:20. ??1分 综上所知,S?QNM:S?QNR的值为3:20. ??1分 21.解:

(1)m=-5,n=-3 (2)y=

4x+2 3(3)是定值.

因为点D为∠ACB的平分线,所以可设点D到边AC,BC的距离均为h, 设△ABC AB边上的高为H, 则利用面积法可得:

CM?hCN?hMN?H?? 222(CM+CN)h=MN﹒H

CM?CNMN?

HhCM?CN又 H=

MN化简可得 (CM+CN)﹒故

MN1?

CM?CNhy111?? CMCNh?c?322. 解:( 1)由已知得:?解得

??1?b?c?0c=3,b=2

∴抛物线的线的解析式为y??x?2x?3

2DBGAEOFx

阳光家教网 www.ygjj.com 中考(初三复习)数学资料 (2)由顶点坐标公式得顶点坐标为(1,4)

所以对称轴为x=1,A,E关于x=1对称,所以E(3,0) 设对称轴与x轴的交点为F

所以四边形ABDE的面积=S?ABO?S梯形BOFD?S?DFE

111AO?BO?(BO?DF)?OF?EF?DF 222111=?1?3?(3?4)?1??2?4 222=

=9

(3)相似

如图,BD=BG2?DG2?12?12?2 BE=BO2?OE2?32?32?32 DE=DF2?EF2?22?42?25 222所以BD?BE?20, DE?20即: BD?BE?DE,所以?BDE是直角三角形

222所以?AOB??DBE?90?,且所以?AOB??DBE.

AOBO2, ??BDBE223. 解(Ⅰ)当a?b?1,c??1时,抛物线为y?3x2?2x?1, 方程3x2?2x?1?0的两个根为x1??1,x2?1. 3∴该抛物线与x轴公共点的坐标是??1···················································· 2分 0?. ·,0?和?,(Ⅱ)当a?b?1时,抛物线为y?3x2?2x?c,且与x轴有公共点.

?1

?3??

1对于方程3x2?2x?c?0,判别式??4?12c≥0,有c≤. ··········································· 3分

3①当c?111时,由方程3x2?2x??0,解得x1?x2??. 333此时抛物线为y?3x2?2x??1?1与x轴只有一个公共点??,··································· 4分 0?. ·3?3?②当c?1时, 3x1??1时,y1?3?2?c?1?c,

阳光家教网 www.ygjj.com 中考(初三复习)数学资料 x2?1时,y2?3?2?c?5?c.

1由已知?1?x?1时,该抛物线与x轴有且只有一个公共点,考虑其对称轴为x??,

3应有??y1≤0,?1?c≤0, 即?

?y2?0.?5?c?0.解得?5?c≤?1.

1综上,c?或?5?c≤?1. ······················································································· 6分

3(Ⅲ)对于二次函数y?3ax2?2bx?c,

由已知x1?0时,y1?c?0;x2?1时,y2?3a?2b?c?0, 又a?b?c?0,∴3a?2b?c?(a?b?c)?2a?b?2a?b. 于是2a?b?0.而b??a?c,∴2a?a?c?0,即a?c?0.

∴a?c?0. ······················································································································ 7分 ∵关于x的一元二次方程3ax2?2bx?c?0的判别式

??4b2?12ac?4(a?c)2?12ac?4[(a?c)2?ac]?0,

∴抛物线y?3ax2?2bx?c与x轴有两个公共点,顶点在x轴下方. ································· 8分 又该抛物线的对称轴x??b, 3ay 由a?b?c?0,c?0,2a?b?0, 得?2a?b??a,

O 1 x 1b2∴???. 33a3又由已知x1?0时,y1?0;x2?1时,y2?0,观察图象,

可知在0?x?1范围内,该抛物线与x轴有两个公共点. ················································ 10分

24. 解:(1)∵点F在AD上, ∴AF?2a, ∴DF?b?2a,

1112DFAB?×(b?2a)×b?b2?ab. 2222(2)连结AF, 由题意易知AF∥BD,

∴S△DBF?

阳光家教网 www.ygjj.com 中考(初三复习)数学资料 ∴S△DBF?S△ABD?b2.

(3)正方形AEFG在绕A点旋转的过程中,F点的轨迹是以点A为圆心,AF为半径的圆.

第一种情况:当b>2a时,存在最大值及最小值;

因为△BFD的边BD?得最大、最小值.

如图②所示CF2?BD时,

122b,故当F点到BD的距离取得最大、最小值时,S△BFD取

S△BFD的最大值=S△BF2D?2b?b2?2ab1?2b???2a??,

??22?2??2b?b2?2ab1?2b??,

?2?2a???22??S△BFD的最小值=S△BF2D第二种情况:当b=2a时,存在最大值,不存在最小值;

b2?2ab.(如果答案为4a2或b2也可) S△BFD的最大值=

2 D C

O F E F1 B G A F2 25. 解:(1)取AB中点H,联结MH,

?M为DE的中点,?MH∥BE,MH?1(BE?AD). ··································· (1分) 2又?AB?BE,?MH?AB. ·················································································· (1分)

?S△ABM?11AB?MH,得y?x?2(x?0); ·········································· (2分)(1分) 22(x?4)2?22. ········································································ (1分)

(2)由已知得DE??以线段AB为直径的圆与以线段DE为直径的圆外切, 1111?MH?AB?DE,即(x?4)??2?(4?x)2?22?. ···························· (2分)

??222244解得x?,即线段BE的长为; ············································································· (1分)

33(3)由已知,以A,N,D为顶点的三角形与△BME相似,

又易证得?DAM??EBM. ······················································································ (1分) 由此可知,另一对对应角相等有两种情况:①?ADN??BEM;②?ADB??BME. ①当?ADN??BEM时,?AD∥BE,??ADN??DBE.??DBE??BEM. ?DB?DE,易得BE?2AD.得BE?8; ··························································· (2分) ②当?ADB??BME时,?AD∥BE,??ADB??DBE. ??DBE??BME.又?BED??MEB,?△BED∽△MEB.

2010中考数学专题复习 - 压轴题(含答案) 

阳光家教网www.ygjj.com中考(初三复习)数学资料1??10k2?b2?0?k2?,??2?4k?b??3?22??b2??5.1x?5.21∴直线OP3的函数表达式为y?x2∴直线CA的函数表达式为y?1?y?x??2?x2?14x?0,即x(x-14)=0.由??y?1x2?5x?84??x1?0,?x2?14,∴??y?0;y?7.?1?
推荐度:
点击下载文档文档为doc格式
3g9zm1x73m28mwx144ui
领取福利

微信扫码领取福利

微信扫码分享