阳光家教网 www.ygjj.com 中考(初三复习)数学资料 (1)求A地经杭州湾跨海大桥到宁波港的路程.
(2)若货物运输费用包括运输成本和时间成本,已知某车货物从A地到宁波港的运输成本是每千米1.8元,时间成本是每时28元,那么该车货物从A地经杭州湾跨海大桥到宁波港的运输费用是多少元?
(3)A地准备开辟宁波方向的外运路线,即货物从A地经杭州湾跨海大桥到宁波港,再从宁波港运到B地.若有一批货物(不超过10车)从A地按外运路线运到B地的运费需8320元,其中从A地经杭州湾跨海大桥到宁波港的每车运输费用与(2)中相同,从宁波港到B地的海上运费对一批不超过10车的货物计费方式是:一车800元,当货物每增加1车时,每车的海上运费就减少20元,问这批货物有几车?
12.(2008淅江宁波)如图1,把一张标准纸一次又一次对开,得到“2开”纸、“4开”纸、“8开”纸、“16开”纸?.已知标准纸的...
短边长为a.
(1)如图2,把这张标准纸对开得到的“16开”张纸按如下步骤折叠:
第一步 将矩形的短边AB与长边AD对齐折叠,点B落在AD上的点B?处,铺平后得折痕AE;
第二步 将长边AD与折痕AE对齐折叠,点D正好与点E重合,铺平后得折痕AF. 则AD:AB的值是 ,AD,AB的长分别是 , .
(2)“2开”纸、“4开”纸、“8开”纸的长与宽之比是否都相等?若相等,直接写出这个比值;若不相等,请分别计算它们的比值.
(3)如图3,由8个大小相等的小正方形构成“L”型图案,它的四个顶点E,F,G,H分别在“16开”纸的边AB,BC,CD,DA上,求DG的长.
?①标准纸“2开”纸、“4开”纸、“8开”纸、“16开”纸??都是矩形. ②本题中所求边长或面积都用含a的代数式表示. (4)已知梯形MNPQ中,MN∥PQ,∠M?90,MN?MQ?2PQ,且四个顶点
M,N,P,Q都在“4开”纸的边上,请直接写出2个符合条件且大小不同的直角梯形的
面积.
A B?
4开
a
2开
8开 16开 图1
D F
A E
H D G
B
E 图2
C
B
F 图3
C
13.(2008山东威海)如图,在梯形ABCD中,AB∥CD,AB=7,CD=1,AD=BC=5.点M,N分别在边AD,BC上运动,并保持MN∥AB,ME⊥AB,NF⊥AB,垂足分别为E,F.
(1)求梯形ABCD的面积;
(2)求四边形MEFN面积的最大值.
阳光家教网 www.ygjj.com 中考(初三复习)数学资料 (3)试判断四边形MEFN能否为正方形,若能, 求出正方形MEFN的面积;若不能,请说明理由.
D M C N A E F B
14.(2008山东威海)如图,点A(m,m+1),B(m+3,m-1)都在反比例函数y?的图象上.
(1)求m,k的值;
(2)如果M为x轴上一点,N为y轴上一点, 以点A,B,M,N为顶点的四边形是平行四边形, 试求直线MN的函数表达式.
友情提示:本大题第(1)小题4分,第(2)小题7分.对
完成第(2)小题有困难的同学可以做下面的(3)选做
题.选做题2分,所得分数计入总分.但第(2)、(3)
小题都做的,第(3)小题的得分不重复计入总分.
(3)选做题:在平面直角坐标系中,点P的坐标
y 为(5,0),点Q的坐标为(0,3),把线段PQ向右平 移4个单位,然后再向上平移2个单位,得到线段P1Q1, Q 2 则点P1的坐标为 ,点Q1的坐标为 .
1 O kx
y A B O x Q1 P1 1 2 3 P x 阳光家教网 www.ygjj.com 中考(初三复习)数学资料
15.(2008湖南益阳)我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.
如图12,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.
(1) 请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;
(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;
(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.
y C A O M B x D 图12 阳光家教网 www.ygjj.com 中考(初三复习)数学资料
0),A(6,0),16.(2008年浙江省绍兴市)将一矩形纸片OABC放在平面直角坐标系中,O(0,2C(0,3).动点Q从点O出发以每秒1个单位长的速度沿OC向终点C运动,运动秒时,
3动点P从点A出发以相等的速度沿AO向终点O运动.当其中一点到达终点时,另一点也停止运动.设点P的运动时间为t(秒).
(1)用含t的代数式表示OP,OQ;
PQ沿PQ翻折,点O恰好落在CB边上的点D处,求点D(2)当t?1时,如图1,将△O的坐标;
(4) 连结AC,将△OPQ沿PQ翻折,得到△EPQ,如图2.问:PQ与AC能否平行?PE与AC
能否垂直?若能,求出相应的t值;若不能,说明理由.
y C Q O P 图1
A x D B C E Q O 图2 P A x y B
阳光家教网 www.ygjj.com 中考(初三复习)数学资料
17.(2008年辽宁省十二市)如图16,在平面直角坐标系中,直线y??3x?3与x轴交于点A,与y轴交于点C,抛物线y?ax?223x?c(a?0)经过A,B,C三点. 3(1)求过A,B,C三点抛物线的解析式并求出顶点F的坐标;
(2)在抛物线上是否存在点P,使△ABP为直角三角形,若存在,直接写出P点坐标;若不存在,请说明理由; (3)试探究在直线AC上是否存在一点M,使得△MBF的周长最小,若存在,求出M点的坐标;若不存在,请说明理由.
y A C O F B x 图16
18.(2008年沈阳市)如图所示,在平面直角坐标系中,矩形ABOC的边BO在x轴的负半轴上,边OC在y轴的正半轴上,且AB?1,OB?3,矩形ABOC绕点O按顺时针方向旋转60后得到矩形EFOD.点A的对应点为点E,点B的对应点为点F,点C的对应点为点D,抛物线y?ax?bx?c过点A,E,D. (1)判断点E是否在y轴上,并说明理由; (2)求抛物线的函数表达式;
2?