921285则圆M:(x?)?(y?)?
4216②当m?1时,l:x?y?2?0圆心为Q(x0,y0),
y?y2y0?1?1,x0?y0?2?3,
2半径r?|OQ|?32?12 则圆M:(x?3)2?(y?1)2?10
21.(12分)已知函数f(x)?x?1?alnx.
(1)若f(x)≥0,求a的值;
(2)设m为整数,且对于任意正整数n,(1+11)(1+2)鬃?(1221) 【解析】⑴ f(x)?x?1?alnx,x?0 ax?a则f?(x)?1??,且f(1)?0 xx当a≤0时,f??x??0,f?x?在?0,所以0?x?1时,f?x??0,???上单调增, 不满足题意; 当a?0时, 当0?x?a时,f?(x)?0,则f(x)在(0,a)上单调递减; 当x?a时,f?(x)?0,则f(x)在(a,??)上单调递增. ①若a?1,f(x)在(a,1)上单调递增∴当x?(a,1)时f(x)?f(1)?0矛盾 ②若a?1,f(x)在(1,a)上单调递减∴当x?(1,a)时f(x)?f(1)?0矛盾 ③若a?1,f(x)在(0,1)上单调递减,在(1,??)上单调递增∴f(x)≥f(1)?0满足题意 综上所述a?1. ⑵ 当a?1时f(x)?x?1?lnx≥0即lnx≤x?1 则有ln(x?1)≤x当且仅当x?0时等号成立 11∴ln(1?k)?k,k?N* 221111111一方面:ln(1?)?ln(1?2)?...?ln(1?n)??2?...?n?1?n?1, 2222222111即(1?)(1?2)...(1?n)?e. 222111111135另一方面:(1?)(1?2)...(1?n)?(1?)(1?2)(1?3)??2 22222264111当n≥3时,(1?)(1?2)...(1?n)?(2,e) 222111∵m?N*,(1?)(1?2)...(1?n)?m, 222∴m的最小值为3. 22.[选修4-4:坐标系与参数方程](10分) ?x???t,l在直角坐标系xOy中,直线?的参数方程为?(t为参数),直线l?的参数方程 y?kt,??x????m,?为?(m为参数),设l?与l?的交点为P,当k变化时,P的轨迹为曲线C. my?,?k?(1)写出C的普通方程: (2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l?:?(cos??sin?)????, M为l?与C的交点,求M的极径. 【解析】⑴将参数方程转化为一般方程 l1:y?k?x?2? ……① 1l2:y??x?2? ……② k①?②消k可得:x2?y2?4 即P的轨迹方程为x2?y2?4; ⑵将参数方程转化为一般方程 l3:x?y?2?0 ……③ ??x?y?2?0l联立曲线C和3?2 2x?y?4???32?x??2解得? 2?y????2?x??cos?由?解得??5 ?y??sin?即M的极半径是5. 23.[选修4-5:不等式选讲](10分) 已知函数f(x)?|x??|?|x??|. (1)求不等式f(x)??的解集; (2)若不等式f(x)?x??x?m的解集非空,求m的取值范围. ??3,x≤?1?【解析】⑴f?x??|x?1|?|x?2|可等价为f?x???2x?1,?1?x?2.由f?x?≥1可得: ?3,x≥2?①当x≤?1时显然不满足题意; ②当?1?x?2时,2x?1≥1,解得x≥1; ③当x≥2时,f?x??3≥1恒成立.综上,f?x??1的解集为?x|x≥1?. 22⑵不等式f?x?≥x?x?m等价为f?x??x?x≥m, 2令g?x??f?x??x?x,则g?x?≥m解集非空只需要??g?x???max≥m. ??x2?x?3,x≤?1?2而g?x????x?3x?1,?1?x?2. ??x2?x?3,x≥2?①当x≤?1时,??g?x???max?g??1???3?1?1??5; 35?3??3?gx?g???3??1??②当?1?x?2时,?; ????????max24?2??2?2③当x≥2时,??g?x???max?g?2???2?2?3?1. 2综上,??g?x???max?55,故m?. 44